

MARKS: 720

FULL TEST – 3

TIME: 3 Hrs

	PART A – PHYSICS					
	SECTION A					
1.	• The scientific principle involved in radio and TV broadcast is					
	(1) Superconductivity		(2) Propagation	of electromag	netic waves	
	(3) Electromagnetic ind	uction	(4) Amplification	on by population	on inversion	
2.	The volume of a cube h	aving sides 1.2 m is app	ropriately expressed as			
	(1) $1.728 \times 10^{6} \text{ cm}^{3}$	(2) $1.7 \times 10^6 \text{ cm}^3$	(3) $1.8 \times 10^{6} \text{ cm}^{3}$	(4) 1 '	$73 \times 10^6 \text{ cm}^3$	
3	Thickness of a pencil m	easured by using a digi	tal screw gauge (least co	(1) 1.	comes out to be 0.802 cm	
5.	The percentage error in	the measurement is	tal selew gauge (least co		comes out to be 0.002 em.	
	(1) 0.125%	(2) 2 43%	(3) 4 120/	$(A) 2^{-1}$	1 4 94	
4.	The position of a particle 1	(2) 2.4370 moving along x-axis is giv	(5) 4.1270 ren by x = 10t - 2t ² Then the	time at which i	t will come to rest is	
	(1) 0	(2) 2.5 s	(3) 5 s	(4) 10	s	
5.	The frequency of a ligh	t wave in a material is 2	2×10^{14} Hz and waveleng	th is 5000 A^0 .	The refractive index of the	
	material will be		6			
	(1) 1 50	(2) 3 00	(3) 1 33	(4) 1 4	40	
6	Which one of the follow	ving pair cannot be the r	ectangular components of	force vector o	f 10 N?	
0.	(1) $6 N \& 8 N$	(2) 7 N & $\sqrt{51}$ N	(3) $6\sqrt{2}$ N & $2\sqrt{7}$ N	(4) 9 I	N & 1 N	
7	(1) 011 & 011	(2) / 1(a (511)	(3) 0 12 11 0 2 11 11	() > 1		
7.	If vesters $\vec{A} = 0^2 \cdot 0^2$), are normandiaular to a	ach other then	value of a is	
	If vectors $A = 2I + 3J + 3$	$- p \kappa$ and $B = 3I - 8J + 2$	K are perpendicular to ea	ach other, then	value of p is	
	(1) 2	(2) –8	(3) –9	(4) 9	
8	$\Delta 10 $ g hullet moving a	t 200 m/s stops after pe	netrating 5 cm of wooder	nlank. The av	verage force exerted on the	
0.	hullet will be	t 200 m/s stops after per	netrating 5 cm of wooder		erage force exerted on the	
	(1) 2000 N	(2) _2000 N	(3) 4000 N	(4) _4	000 N	
Q	(1) 2000 \mathbf{R}	(2) = 2000 N ies a bag of weight 40 N or	n his shoulder. The force wi	+)	or nuches un his feet is	
۶.	(1) 882 N	(2) 530 N	(3) 90 N	(4) 60	Ω N	
10	A tall man of height 6 f	eet want to see his full i	mage Then required min	imum length o	f the mirror will be	
10.	(1) 12 feet	(2) 3 feet	(3) 6 feet	$(4) \Delta_1$	ny length	
11	The displacement of a r	(2) 5 leet	(5) 0 rect (is given by $x = 0.01$ sin	$(-1)^{-1}$	The time period is	
11.	(1) 0.01 s	$(2) 0.02 \circ$	(2) 0.1 $_{\circ}$	$100\pi(1+0.03)$		
10	(1) 0.01 S	(2) 0.028	(3) 0.18	(4) 0.2		
12.	The position x of a part	icle moving along x-axis	s at time (t) is given by the $\int \frac{1}{2} dt$	e equation $t = \sqrt{1 + 1}$	x + 2, where x is in metre	
	and t in second. The wo	ork done by the force in I	first four second is			
	(1) Zero	(2) 2 J	(3) 4 J	(4) 8 J	 • • • • • • • •	
13.	If a convex lens of focal	length 80 cm and a cond	cave lens of focal length 5	0 cm are comb	ined together, the resulting	
	power shall be					
	(1) + 7.5 D	(2) - 0.75 D	(3) + 6.5 D	(4) - 6.5 D		
14.	·					
	A force $\vec{F} = (2\hat{i} + 3\hat{j} - 5)$	\hat{k}) Nacts at a point $\vec{r}_1 =$	$(2\hat{i} + 4\hat{j} + 7\hat{k})$ m. The toro	ue of the force	e about the point	
	$\vec{r}_2 = (\hat{i} + 2\hat{j} + 3\hat{k})m$ is					
			(2) (40) 51			
	(1) $(17j + 5k - 3i)$ Nm	(2) $(2i + 4j - 6k)$ N	Nm (3) $(12i - 5j + 1)$	(k) Nm (4) ((13j - 22i - k) Nm	
15.	A thin uniform wire of	mass m and length l is	bent into a circle. The mo	oment of inertia	a of the wire about an axis	
	passing through its one	end and perpendicular to	o the plane of the circle is	2		
	(1) $\frac{2mL^2}{2}$	(2) $\frac{mL^2}{2}$	(3) $\frac{mL^2}{2}$	(4) $\frac{mL^2}{2m^2}$		
17	π^{-}	π ²	$2\pi^2$	$3\pi^2$	w abanaing the mean of	
16.	The angular velocity of	a body changes from a	ω_1 to ω_2 without applying	a torque but b	y changing the moment of	
	inertia about its axis of	rotation. The ratio of its	corresponding radii of gy	ration is		
	1 A A					

(1) ω₁ : ω₂ (2) $\sqrt{\omega_1}:\sqrt{\omega_2}$ (4) $\sqrt{\omega_2} : \sqrt{\omega_1}$ (3) ω₂ : ω₁

1				
17.	Two planets have same density	but different radii. The a	acceleration due to gravit	y would be
	(1) Same on both planets		(2) Greater on the small	ler planet
	(3) Greater on the larger planet		(4) Dependent on the di	stance of planet from the sun
18.	If earth suddenly stops rotating	g, then the weight of an o	bject of mass m at equat	for will be [ω is angular speed of
	earth and R is its radius]			
	(1) Decreasing by $m\omega^2 R$ (2)	2) Increasing by $m\omega^2 R$	(3) Decreasing by $m\omega R$	k^2 (4) Increasing by m ωR^2
19.	A steel wire is 1 m long and 1	mm^2 in area of cross-se	ction. If it takes 200 N to	o stretch this wire by 1 mm. how
	much force will be required to	stretch a wire of the same	e material as well as dian	neter from its normal length of 10
	m to a length of 1002 cm^2			
	(1) 1000 N	(2) 200 N	(3) 400 N	(4) 2000 N
20.	The volume of an air bubble is	doubled as it rises from	the bottom of lake to its s	surface The atmospheric pressure
	is 75 cm of mercury. The ratio	of density of mercury to	that of lake water is $40/3$	The depth of the lake in metre is
	(1) 10	(2) 15	(3) 20	(4) 25
21	The readings of a bath on Celsi	us and Fahrenheit therm	(3) 20 ometers are in the ratio 2°	5 The temperature of the bath is
-11	$(1) - 26 66^{\circ}C$	(2) 40° C	(3) 45 71°C	(4) $26.66^{\circ}C$
22.	In a thermodynamic process press	sure of a fixed mass of a ga	s is changed in such a man	ner that the gas releases 20 I of heat
	when 8 J of work was done on the	gas. If the initial internal en	nergy of the gas was 30 J, the	nen the final internal energy will be
	(1) 2 J	(2) 18 J	(3) 42 J	(4) 58 J
23.	The temperature inside and out	side a refrigerator are 27	3 K and 300 K respective	ly. Assuming that the refrigerator
	cycle is reversible, for every jo	ule of work done, the hea	at delivered to the surrou	nding will be nearly
	(1) 11 J	(2) 22 J	(3) 33 J	(4) 50 J
24.	A hydrogen cylinder is designed	ed to withstand an internation	al pressure of 100 atm. A	at 27°C, hydrogen is pumped into
	the cylinder which exerts a pre	ssure of 20 atm. At what	temperature does the dan	ger of explosion first sets in?
	(1) 500 K	(2) 1500 K	(3) 1000 K	(4) 2000 K
25.	Two Carnot engines A and B a	re operated in series. The	e engine A receives heat	from the source at temperature T_1
	and rejects the heat to the sink a	at temperature T. The sec	ond engine B receives the	e heat at temperature T and rejects
	to its sink at temperature T_2 . The temperature T_2 is the temperature T_2 .	nen the value of T for wh	ich the efficiency of the t	wo engines is equal is
	,	·		
	$T_{\rm c} + T_{\rm c}$	$T_1 - T_2$		
	(1) $\frac{T_1 + T_2}{2}$ (2)	$\frac{T_1 - T_2}{2}$	(3) $T_1 T_2$	(4) $\sqrt{T_1T_2}$
26	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric	$\frac{T_1 - T_2}{2}$	(3) $T_1 T_2$ buted in its entire volum	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre
26.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric	2) $\frac{T_1 - T_2}{2}$ c charge uniformly distriction field intensity is directly by the second secon	(3) $T_1 T_2$ buted in its entire volum	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre
26.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) $1/d$	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districtive field intensity is directly $\frac{T_1 - T_2}{2}$	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ²
26. 27.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districtive field intensity is directly $\frac{1}{d^2}$ s approximately 150 vo	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total
26. 27.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field is charge on the earth's surface is	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly $(2) \ 1/d^2$ s approximately 150 vo	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total
26. 27.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly $(2) \ 1/d^2$ s approximately 150 vo $(2) \ 6.8 \times 10^6 \text{ C}$	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C
26. 27. 28.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field is charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly $(2) \ 1/d^2$ s approximately 150 vo $(2) \ 6.8 \times 10^6 \text{ C}$ citor has a capacitance 1	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation bety	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C veen the plates is doubled and
26.27.28.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plate	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 thes, the capacitance becomes	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is
26.27.28.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field is charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plate (1) 4	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly $(2) \ 1/d^2$ s approximately 150 vo $(2) \ 6.8 \times 10^6 \text{ C}$ citor has a capacitance 1 ites, the capacitance becomes $(2) \ 2$	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8
26.27.28.29.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 attes, the capacitance becond (2) 2 d in a conductor of cross-	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 aber density of free electrons be
 26. 27. 28. 29. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity on	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 ites, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C veen the plates is doubled and constant of the wax is (4) 8 ber density of free electrons be
 26. 27. 28. 29. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plate (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94×10^{-6} m/s	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 attes, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s
 26. 27. 28. 29. 30. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94 × 10 ⁻⁶ m/s A piece of wire is cut into four	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 direction (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire.
 26. 27. 28. 29. 30. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field is charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plate (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94×10^{-6} m/s A piece of wire is cut into four Compared with that of the orig	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 ites, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si of the bundle is	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire.
26.27.28.29.30.	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94×10^{-6} m/s A piece of wire is cut into four Compared with that of the orig (1) the same	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 directly (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{\text{th}}$	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s are bundled together si of the bundle is (3) 1/8 th	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$
 26. 27. 28. 29. 30. 31. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94 × 10 ⁻⁶ m/s A piece of wire is cut into four Compared with that of the orig (1) the same When equal current is passed	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{\text{th}}$	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si of the bundle is (3) $1/8^{\text{th}}$ magnetic field is produc	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$
 26. 27. 28. 29. 30. 31. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plat (1) 4 A current of 10 A is maintained 9×10^{28} m ⁻³ , the drift velocity of (1) 6.94×10^{-6} m/s A piece of wire is cut into four Compared with that of the orig (1) the same When equal current is passed number of turns in the coils is 3	2) $\frac{T_1 - T_2}{2}$ c charge uniformly districting field intensity is directly (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 attes, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{th}$ through two coils, equal 8 : 15, then the ratio of th	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si of the bundle is (3) $1/8^{\text{th}}$ magnetic field is produce eir radii will be	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$
 26. 27. 28. 29. 30. 31. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plate (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94 × 10 ⁻⁶ m/s A piece of wire is cut into four Compared with that of the orig (1) the same When equal current is passed number of turns in the coils is 2 (1) 1 : 1	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 tes, the capacitance beconds (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{th}$ through two coils, equal 3: 15, then the ratio of th (2) 15 : 8	(3) T_1T_2 buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si of the bundle is (3) $1/8^{th}$ magnetic field is produc eir radii will be (3) 8 : 15	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C veen the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$ red at their centres. If the ratio of (4) 1 : 2
 26. 27. 28. 29. 30. 31. 32. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the electric (1) 1/d If atmospheric electric field is charge on the earth's surface is (1) 6.8×10^5 C An air filled parallel plate capa wax is inserted between the plate (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94×10^{-6} m/s A piece of wire is cut into four Compared with that of the orig (1) the same When equal current is passed number of turns in the coils is 2 (1) 1 : 1 A proton and an alpha particle	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 ites, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{\text{th}}$ through two coils, equal 8 : 15, then the ratio of th (2) 15 : 8 enter the same magnetic	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s es are bundled together si of the bundle is (3) $1/8^{\text{th}}$ magnetic field is produc eir radii will be (3) 8 : 15 field which is perpendic	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C veen the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$ red at their centres. If the ratio of (4) 1 : 2 ular to their velocity. If they have
 26. 27. 28. 29. 30. 31. 32. 	(1) $\frac{T_1 + T_2}{2}$ (2) A sphere of radius r has electric inside the sphere (d < r) the elec (1) 1/d If atmospheric electric field i charge on the earth's surface is (1) 6.8 × 10 ⁵ C An air filled parallel plate capa wax is inserted between the plate (1) 4 A current of 10 A is maintained 9×10 ²⁸ m ⁻³ , the drift velocity of (1) 6.94 × 10 ⁻⁶ m/s A piece of wire is cut into four Compared with that of the orig (1) the same When equal current is passed number of turns in the coils is 2 (1) 1 : 1 A proton and an alpha particle same kinetic energy then ratio	2) $\frac{T_1 - T_2}{2}$ c charge uniformly district ctric field intensity is direction (2) $1/d^2$ s approximately 150 vo (2) 6.8×10^6 C citor has a capacitance 1 tes, the capacitance beco (2) 2 d in a conductor of cross- f free electrons is (2) 5.94×10^{-2} m/s equal parts and the piece inal wire, the resistance of (2) $1/16^{\text{th}}$ through two coils, equal 8 : 15, then the ratio of th (2) $15 : 8$ enter the same magnetic of radii of their circular p	(3) $T_1 T_2$ buted in its entire volum ectly proportional to (3) d lt/m and radius of the o (3) 6.8×10^4 C pF. If the separation betw mes 2 pF. The dielectric (3) 10 section 1 cm ² . If the num (3) 1.94×10^{-3} m/s are bundled together si of the bundle is (3) $1/8^{\text{th}}$ magnetic field is produce eir radii will be (3) 8 : 15 field which is perpendic eath is	(4) $\sqrt{T_1T_2}$ e. At a distance d from the centre (4) d ² earth is 6400 km, then the total (4) 6.8×10^9 C ween the plates is doubled and constant of the wax is (4) 8 uber density of free electrons be (4) $2.94 \times 10-4$ m/s de by side to form a thicker wire. (4) $1/4^{\text{th}}$ red at their centres. If the ratio of (4) 1 : 2 ular to their velocity. If they have

33. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment m. The configuration that has the highest net magnetic dipole moment is

34. A flat coil of 500 turns, each of area 50 cm², rotates in a uniform magnetic field of 0.14 Wb/m² about an axis normal to the field at an angular speed of 150 rad/s. The coil has a resistance of 5 Ω . The induced e.m.f. is applied to an external resistance of 10 Ω . The peak current through the resistance is

- (1) 1.5 A (2) 2.5 A (3) 3.5 A (4) 4.5 A
- **35.** The current passing through a choke coil of self-inductance 5 H is decreasing at the rate of 2 A/s. The e.m.f. developed across the coil is

(1) 10 V (2) - 10 V (3) - 2.5 V (4) 2.5 V

SECTION B

36.	In an LCR circuit $L = 8$.	0 henry, $C = 0.5 \ \mu F$ and $R = 100$) Ω are in series. The res	onant angular frequency is
	(1) 500 rad/s	(2) 600 rad/s	(3) 800 rad/s	(4) 1000 rad/s
37.	The following can be an	ranged in the decreasing order of	f wave number as:	
	A. AM radio	B. TV and FM radio	C. Microwave	D. Short radio wave
	(1) $A > B > D > C$	(2) $C > D > B > A$ (3) $A >$	B > C > D	(4) $D > C > B > A$.
38.	In an interference pattern	n produced by two identical slits	, the intensity at the site	of the central maximum is
	I. The intensity at the same	me spot when either of the two s	lits is closed is Io, then	
	(1) I = Io	(2) $I = 2$ Io	(3) $I = 4$ Io (4) I an	nd Io are not related to each other
39.	In Young's double slit in	nterference experiment, the slit set	eparation is made 3 folds	s. The fringe width becomes
	(1) 1/3rd time	(2) 1/9th time	(3) 3 times	(4) 9 times
40.	Ultraviolet radiations of	6.2 eV fall on an aluminium sur	face (work function 4.2	eV). The kinetic energy (in joule)
	of the fastest electron en	nitted is approximately		
	(1) 3.2×10^{-21}	(2) 3.2×10^{-19}	(3) 3.2×10^{-17}	(4) 3.2×10^{-15}
41.	If a radioactive material	remains 25% after 16 days, ther	n its half life will be	
	(1) 32 days	(2) 8 days	(3) 64 days	(4) 28 days
42.	. The current gain β of a transistor is 50. The input resistance of the transistor, when used in the common emitter			en used in the common emitter
	configuration, is 1 k Ω . '	The peak value of the collector A	AC current for an alterna	ting peak input voltage 0.01V is
	(1) 100 µA	(2) 250 µA	(3) 500 µA	(4) 800 μA
43.	Slit widths in a Young's	double slit experiment are in ra	tio 9:4. Ratio of intensity	y at minima to that at maxima is
	(1) 4:9	(2) 16:81	(3) 1:25	(4) 1:16
44.	An object is placed in front of two convex lenses one by one at a distance u from the lens. The focal lengths			
	of the lenses are $30 \text{ cm} a$	and 15 cm respectively. If the s_{12}	(2) 25 are	(4) 20 are
	(1) 15 cm The true on here a set of	(2) 20 cm	(3) 25 cm	(4) 50 cm
45.	The two spheres, one of	which is hollow and other solid	, nave identical masses a	nd moment of inertia about
	their respective diameter $(1) 5 \cdot 7$	rs. The ratio of their radii is give $(2) 5 \cdot 3$	in by the square root of (3) $3 \cdot 5$	(1) 3 · 7
46.	By increasing temperatu	(2) 5. 5 are of a gas by 6 K its pressure in	creases by 0.4 % at con	stant volume Then initial
	temperature of gas is			
	(1) 1000 K	(2) 1500 K	(3) 2000 K	(4) 750 K
47.	In resonance tube two su	uccessive positions of resonance	e are obtained at 15 cm a	and 48 cm. If the frequency of the
	fork is 500 hertz, the vel	locity of sound is		
	(1) 330 m/s	(2) 300 m/s	(3) 1000 m/s	(4) 360 m/s
48.	A particle moves along 2	X-axis from $x = 0$ to $x = 1$ m uno	der the influence of a for	ce given by . $F = 3x^2 + 2x - 10$

Work done in the process is

(1) +4 J (2) -4 J (3) +8 J (4) -8 J

49. A microscope is focussed on a coin lying at the bottom of a beaker. The microscope is now raised by 1 cm. To what depth should the water be poured into the beaker so that the coin is again in focus? (the refractive index of water is 3/4)

(1) 1 cm (2) 4/3 cm

50. The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux ϕ linked with the primary coil is given by $\phi = \phi_0 + 4t$ where ϕ is in weber, t is time in second and ϕ_0 is a constant, the output voltage across the secondary coil is

(3) 3 cm

(4) 4 cm

(1) 120 volt (2) 220 volt (3) 30 volt (4) 90 volt

PART B – CHEMISTRY SECTION A

		JLCI		
51.	Lucas reagent is used	to distinguish among primary,	secondary and tertiary:	
	a) Alkyl halides	b) Alcohols	c) Aliphatic amines	d) Aromatic amines
52.	The major organic pro	oduct in the reaction, $CH_3 - 0 - 0$	$-CH(CH_3)_2 + HI \longrightarrow Product is:$	
	$CH_3OC(CH_3)_2$			
	ļ			
	a) I	b) $CH_3I + (CH_3)_2CHOH$	c) $CH_3OH + (CH_3)_2CHI$	d) ICH ₂ OCH(CH ₃) ₂
53.	$CH_3CH_2 - CHO \xrightarrow{Dil.}_{alkali}$	product		
	The product in the ab	ove reaction is		
	a) CH ₃ CH ₂ COOH		b) $CH_3CH_2 - CH_2OH$	
	CH ₃ -CH ₂ -CH-C	H ₂ —CHO	CH ₃ -CH ₂ -CH-CH-CH	0
	c) OH	-	d) о́н с́н³	
54.	The reaction. CH ₂ CHO	$+ H_2N - NH_2 \rightarrow CH_2CH = N-NH_2$	2 is:	
	a) Elimination	b) Addition	c) Addition-elimination	d) None of these
55.	Arrange the following	CH ₃ NH ₂ (I); (CH ₃) ₂ NH (II); C ₆	H_5NH_2 (III); (CH ₃) ₃ N (IV) in i	increasing order of basic
	nature in aqueous me	dium:		C C
	a) II < I < IV < III	b) III < IV < I < II	c) I < II < III < IV	d) II < III < I < IV
56	The reaction RCOOH	$\text{NaN}_3/\text{conc.H}_2\text{SO}_4$ \longrightarrow $R\text{NH}_2 + \text{N}_2 + C$	0. is known as	
00.	a) Curtius reaction	b) Lossen reaction	c) Schmidt reaction	d) Hofmann reaction
57.	Which one of the follo	wing is an example of a non-re-	ducing sugar?	.,
	a) Sucrose	b) Lactose	c) Maltose	d) Cellobiose
58.	Which is electron defi	cient compound?	2	,
	a) C ₂ H ₄	b) B_2H_6	c) C ₂ H ₆	d) NaBH ₄
59.	The correct order of b	ond angles is:		
	a) $PF_3 < PCl_3 < PBr_3$	$_{\rm s} < PI_3$	b) $PF_3 < PBr_3 < PCl_3 < PI_3$	
	c) $PI_3 < PBr_3 < PCl_3$	< <i>P</i> F ₃	d) $PF_3 > PCl_3 < PBr_3 < PI_3$	
60.	What is the formula to	o find value of $t_{1/2}$ for a zero or	der reaction?	
	a) $\frac{k}{k}$	b) $\frac{2k}{k}$	c) $\frac{[R]_0}{1}$	d) $\frac{0.693}{1}$
	$[R]_0$	⁷ [<i>R</i>] ₀ H+	5 2k	, k
61.	$CH_3COOC_2H_5 + H_2O -$	\longrightarrow CH ₃ COOH + C ₂ H ₅ OH is	an example of order	
	a) Zero	b) Second	c) Third	d) Pseudo first order

62. The correct structure of the drug paracetamol is

76.	$TiH_{1.73}$ is an example of :		
	a) Ionic hydride b) Covalent hydride	c) Metallic hydride	d) Polymeric hydride
77.	Caprolactam is used to prepare which of the followi	ng polymer?	
	a) Nylon-6, 6 b) Malamine	c) Nylon-6	d) PMMA
78.	The value of n in $MnO_4^- + 8H^+ + ne^- \rightarrow Mn^{2+} + 4H^{-1}$	20 is	
	a) 5 b) 4	c) 2	d) 3
79.	Which of the following solution highest boiling poin	t?	
	a) 0.1 M urea b) 0.1 M sucrose	c) 0.1 M <i>NaNO</i> ₃	d) 0.1 M $Al(NO_3)_3$
80.	6.02×10^{20} molecules of urea are present in 100 mI	of its solution. The con	centration of urea solution is
	a) 0.1 M b) 0.01 M	c) 0.001 M	d) 0.02 M
81.	The maximum number of molecules is present in:		
	a) 15 L of H_2 gas at STP b) 5 L of N_2 gas at ST	P c) 0.5 g of H_2 gas	d) 10 g of O ₂ gas
82.	An organic compound has an empirical formula (Cl	H_2 0) its vapour density	is 45. The molecular formula of
	the compound is		
	a) CH_2O b) C_2H_5O	c) $C_2 H_2 O$	d) $C_3 H_6 O_3$
83.	The density of neon will be highest at		
	a) STP b) 0°C, 2 atm	c) 273°C, 1 atm	d) 273°C, 2 atm
84.	The ionisation enthalpy of hydrogen atom is 1.312	$\times 10^{\circ}$ Jmol ⁻¹ . The energy	y required to excite the electron
	in the atom from $n_1 = 1$ to $n_2 = 2$ is		N
	a) 8.51×10^{3} J mol ⁻¹ b) 6.56×10^{3} J mol ⁻¹	c) 7.56×10^{5} J mol ⁻¹	d) 9.84×10^{3} J mol ⁻¹
85.	If $n = 6$, the correct sequence for filling of electrons	will be:	
	a) $ns \rightarrow np \rightarrow (n-1)d \rightarrow (n-2)f$	b) $ns \rightarrow (n-2)f \rightarrow (r)$	$(n-1)d \rightarrow np$
	c) $ns \rightarrow (n-1)d \rightarrow (n-2)f \rightarrow np$	d) $ns \rightarrow (n-2)f \rightarrow n$	$p \to (n-1)d$
	SEC	TION B	
86.	Which of the following is true in respect of adsorption	on?	
86.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH	<i>I</i> < 0
86.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH	I < 0 I > 0
86. 87.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following will	on? b) $\Delta G < 0; \Delta S < 0; \Delta Hd) \Delta G < 0; \Delta S < 0; \Delta Hhe coagulation of Fe(OH$	I < 0 I > 0 I) ₃ sol?
86. 87.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following will	on? b) $\Delta G < 0; \Delta S < 0; \Delta H$ d) $\Delta G < 0; \Delta S < 0; \Delta H$ he coagulation of Fe(OH c) NaCl	I < 0 I > 0 $I)_3 \text{ sol}?$ $d) Mg_3(PO_4)_2$
86. 87. 88.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following will	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl	I < 0 I > 0 $I)_3 \text{ sol?}$ $d) Mg_3(PO_4)_2$
86. 87. 88.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number	I < 0 I > 0 $I)_3 \text{ sol?}$ $d) Mg_3(PO_4)_2$
86. 87. 88.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals	I < 0 I > 0 $I)_3 \text{ sol?}$ $d) Mg_3 (PO_4)_2$
86. 87. 88.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The <i>X</i> — <i>X</i> bond dissociation energy is minimum in:	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of 4 <i>f</i> -orbitals	I < 0 I > 0 I) ₃ sol? d) Mg ₃ (PO ₄) ₂
86. 87. 88. 89.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl ₂	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂	I < 0 I > 0 $I)_3 \text{ sol?}$ d) Mg ₃ (PO ₄) ₂ d) I ₂
86.87.88.89.90.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The <i>X</i> — <i>X</i> bond dissociation energy is minimum in: a) F_2 b) Cl ₂ H ₂ SO ₄ reacts with sugar and acts as:	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of 4 <i>f</i> -orbitals c) Br ₂	I < 0 I > 0 $I)_3 \text{ sol?}$ d) Mg ₃ (PO ₄) ₂ d) I ₂
86. 87. 88. 89.	Which of the following is true in respect of adsorptiona) $\Delta G < 0; \Delta S > 0; \Delta H < 0$ c) $\Delta G > 0; \Delta S > 0; \Delta H < 0$ Which of the following will be the most effective in the following will be the most effe	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age	$I < 0$ $I > 0$ $I)_3 \text{ sol?}$ $d) Mg_3 (PO_4)_2$ $d) I_2$ nt $d) None of these$
86.87.88.89.90.91.	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following by the following will be the most effective in the following by the following will be the most effective in the following by the following will be the most effective in the following by the following will be the most effective in the following by the following will be the most effective in the following be the most effective in the following by the following will be the most effective in the following by the following will be the most effective in the following by the following be the most effective in the following by the following be the most effective in the following by the following be the following by the following by the following be the following by the following by the following by the following be the following by the following by the following by the following be the following by the following be the following by the following by the following by the following be the following by the follo	on? b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of 4 <i>f</i> -orbitals c) Br ₂ c) A sulphonating age	I < 0 I > 0 $I)_3 \text{ sol?}$ d) Mg ₃ (PO ₄) ₂ d) I ₂ nt d) None of these
 86. 87. 88. 89. 90. 91. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl ₂ H ₂ SO ₄ reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) BF ₃ > BCl ₃ > BBr ₃ > BI ₃	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OF c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃	$I < 0$ $I > 0$ $I)_3 \text{ sol?}$ $d) Mg_3 (PO_4)_2$ $d) I_2$ $nt \qquad d) None of these$ $I_3 > BI_3$
 86. 87. 88. 89. 90. 91. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl_2 H_2SO_4 reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) $BF_3 > BCl_3 > BBr_3 > Bl_3$ c) $BI_3 > BBr_3 > BCl_3 > BF_3$	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃	I < 0 I > 0 $I)_3 \text{ sol?}$ $d) Mg_3 (PO_4)_2$ $d) I_2$ I_2 $I_3 > BI_3$ $> BF_3$
 86. 87. 88. 89. 90. 91. 92. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl ₂ H ₂ SO ₄ reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) BF ₃ > BCl ₃ > BBr ₃ > BI ₃ c) BI ₃ > BBr ₃ > BCl ₃ > BF ₃ Among the following substituted silanes the one we	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OF c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to compare	d < 0 d > 0 $d) Mg_3(PO_4)_2$ $d) I_2$ $d) I_2$ d) None of these $a > BI_3$ $> BF_3$ ross linked silicone polymer on
 86. 87. 88. 90. 91. 92. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The <i>X</i> — <i>X</i> bond dissociation energy is minimum in: a) F_2 b) Cl ₂ H ₂ SO ₄ reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) BF ₃ > BCl ₃ > BBr ₃ > BI ₃ c) BI ₃ > BBr ₃ > BCl ₃ > BF ₃ Among the following substituted silanes the one we hydrolysis is	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to compare	d < 0 d > 0 $d) Mg_3(PO_4)_2$ $d) Mg_3(PO_4)_2$ $d) I_2$ d) None of these $a > BI_3$ $> BF_3$ ross linked silicone polymer on
 86. 87. 88. 90. 91. 92. 	Which of the following is true in respect of adsorptiona) $\Delta G < 0; \Delta S > 0; \Delta H < 0$ c) $\Delta G > 0; \Delta S > 0; \Delta H < 0$ Which of the following will be the most effective in the following will be the most effective in the a) KCNb) BaCl2Lanthanide contraction is due to increase ina) Shielding by $4f$ -electronsc) Effective nuclear chargeThe X — X bond dissociation energy is minimum in:a) F_2 b) Cl2H2SO4 reacts with sugar and acts as:a) A dehydrating agentb) An oxidizing agentThe correct Lewis acid order for boron halides is:a) $BF_3 > BCl_3 > BBr_3 > Bl_3$ c) $BI_3 > BBr_3 > BCl_3 > BF_3$ Among the following substituted silanes the one whydrolysis isa) R_4 Sib) $RSiCl_3$	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OF c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to concept	d < 0 $d > 0$
 86. 87. 88. 90. 91. 92. 93. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the a) KCN b) BaCl ₂ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The <i>X</i> — <i>X</i> bond dissociation energy is minimum in: a) F_2 b) Cl ₂ H ₂ SO ₄ reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) BF ₃ > BCl ₃ > BBr ₃ > BI ₃ c) BI ₃ > BSCl ₃ > BBr ₃ > BI ₃ c) BI ₃ > BBr ₃ > BCl ₃ > BF ₃ Among the following substituted silanes the one we hydrolysis is a) R_4 Si b) R SiCl ₃ Which pair of the following chlorides do not impart	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to conc c) R_2 SiCl ₂ colour to the flame?	d < 0 I > 0 $I_{3} \text{ sol?}$ $d) Mg_{3}(PO_{4})_{2}$ $d) I_{2}$ $d) I_{2}$ d) None of these $I_{3} > BI_{3}$ BF_{3} BF_{3} BF_{3} $I_{3} > BF_{3}$ $I_{3} > BF_{3}$ I
 86. 87. 88. 90. 91. 92. 93. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following by $BaCl_2$ Lanthanide contraction is due to increase in a) Shielding by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl_2 H ₂ SO ₄ reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) $BF_3 > BCl_3 > BBr_3 > Bl_3$ c) $BI_3 > BBr_3 > BCl_3 > BF_3$ Among the following substituted silanes the one whydrolysis is a) R_4Si b) $RSiCl_3$ Which pair of the following chlorides do not impart a) BeCl ₂ and SrCl ₂ b) BeCl ₂ and MgCl ₂	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OF c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to conc c) R_2 SiCl ₂ colour to the flame? c) CaCl ₂ and BaCl ₂	d < 0 d > 0 $d) Mg_3(PO_4)_2$ $d) Mg_3(PO_4)_2$ $d) I_2$ d) None of these $a > BI_3$ $> BF_3$ ross linked silicone polymer on $d) R_3SiCl$ $d) BaCl_2 and SrCl_2$
 86. 87. 88. 90. 91. 91. 92. 93. 94. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the following by $4f$ -electrons c) Effective nuclear charge The X — X bond dissociation energy is minimum in: a) F_2 b) Cl_2 H_2SO_4 reacts with sugar and acts as: a) A dehydrating agent b) An oxidizing agent The correct Lewis acid order for boron halides is: a) $BF_3 > BCl_3 > BBr_3 > BI_3$ c) $BI_3 > BBr_3 > BCl_3 > BF_3$ Among the following substituted silanes the one whydrolysis is a) R_4Si b) $RSiCl_3$ Which pair of the following chlorides do not impart a) $BeCl_2$ and $SrCl_2$ b) $BeCl_2$ and $MgCl_2$ The solubility of alkali metal hydroxide is	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OH c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to cu c) R_2 SiCl ₂ colour to the flame? c) CaCl ₂ and BaCl ₂	d < 0 d > 0 $d) Mg_3(PO_4)_2$ $d) Mg_3(PO_4)_2$ $d) I_2$ d) None of these $d) R_3 > BI_3$ BF_3 $d) R_3 SiCl$ $d) BaCl_2 and SrCl_2$
 86. 87. 88. 90. 91. 91. 92. 93. 94. 	Which of the following is true in respect of adsorption a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$ c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$ Which of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following will be the most effective in the alteria set of the following set of the following set of the following substituted silanes the one with the following substituted silanes the one with the following chlorides do not impart alteria set of the f	b) $\Delta G < 0$; $\Delta S < 0$; ΔH d) $\Delta G < 0$; $\Delta S < 0$; ΔH he coagulation of Fe(OF c) NaCl b) Atomic number d) Size of $4f$ -orbitals c) Br ₂ c) A sulphonating age b) BCl ₃ > BF ₃ > BBr ₃ d) BBr ₃ > BCl ₃ > BI ₃ which will give rise to cr c) R_2 SiCl ₂ colour to the flame? c) CaCl ₂ and BaCl ₂ b) LiOH < NaOH < K	d < 0 $d > 0$ $d >$

95.	The limiting radius rat	io for tetrahedral shap	e is	
	a) 0 to 0.155	b) 0.255 to 0.414	c) 0.155 to 0.225	d) 0.414 to 0.732
96.	If NaCl is dopped with	10^{-4} mole % of SrCl ₂ t	he concentration of cation vaca	ancies will be:
	a) 6.02 x 10^{16} mol ⁻¹	b) $6.02 \times 10^{17} \text{ mol}^{-1}$	c) $6.02 \times 10^{14} \text{ mol}^{-1}$	d) 6.02 x 10^{15} mol ⁻¹
97.	Pick the correct staten	ent with respect to [M	$n(CN)_{a}]^{3-}$	
,,,,	a) It is sn^3d^2 hybridized	d & tetrahedral	h) It is d ² sn ³ hybridize	ed & octabedral
	c) It is den^2 hybridized	& square planar	d) It is sn^3d^2 hybridize	ad & actahedral
00	UOCU CU OU on hosti	na with poriodia acid a	uj it is sp°u- ilybridize	
98.	noch2ch2on oli lleau	ing with periodic actu g	Ives H 🔨	
			2	=0
	а) 2НСООН	b) ^{сно}	c) H	d) 2CO ₂
99.	How many grams of C	Cobalt will be deposite	d when a solution of Cobalt II	chloride is electrolyzed with a
	current of 10 amperes	for 109 minutes? [1 Fa	araday = 96500 coloumb, Aton	nic Mass of $Co = 59 \text{ u}$]
	a) 4.0	b) 20.0	c) 40.0	d) 0.66
100.	Equimolar solutions of	f the following substanc	e were prepared separately, w	hich one of these will record the
	highest pH value?			
	a) BaCl ₂	b) AlCl ₃	c) LiCl	d) BeCl ₂
	.,		-)	
		P	ART C – BOTANY	
			SECTION A	
101.	The category which incl	ludes related families is		
	a) Class	b) Phylum	c) Order	d) Kingdom
102.	The ascending or descen	nding arrangement of tax	conomic categories is called as	1) 17
102	a) Classification	b) Taxonomy	c) Hierarchy	d) Key
105.	Class	Example	Festure	
	a) psilopsida	lycopoduim	Seed habit	
	b) sphenopsida	selaginella	strobilus	
	c) Lycopsida	psilotum	homosporous	
	d) Pteropsida	Dryopteris	Macrophylly (Frond)	
104.	How many meiotic divi	sions would be required	to produce 101 female gametoph	ytes in an Angiosperm?
	a) 101	b) 26	c) 127	d) 202
105.	An algal plant showing	g diplontic life cycle is	dissimilar with the following pl	ant in relation to morphology of
	gametes.	1) D(、 、	1 1 1 1
106	a) Funaria	D) Pteris	c) cycas	d) cladophora
100.	a) Resemblances in mor	phology	b) Anatomical and physical	siological traits
	c) Breeding habits	photogy	d) Presence or observe	of notochord
107.	Assertion (A): Dinoflag	ellate are called whirling	whips.	
	Reason (R): Flagella pro	oduce spinning movement	nts in Dinoflagellate	
	a) Both A and R are true	e and R is the correct exp	planation of A	
	b) Both A and R are true	e but R is not the correct	explanation of A	
	c) A is true but R is fals	e		
100	d) A is false but R is tru	e.		
108.	Mycelium is aseptate an	id coenocytic in		W/ Classica and
	I. Mucor	II. Albugo	III. Rhizopus	IV. Claviceps
100	a) 1, 11, 1 V The cell wall of both ba	U) I, III, IV cteria and evanobacteria	contains	u <i>j</i> 1, 11, 111
1070	a) Lipid	b) plastids	c) protein	d) Muramic acid (Peptidoglycan)
110.	In cell cycle DNA renli	cation take place in	c) protoin	e, manufic acta (r epidogrycun)
_~	a) G1 phase	b) G2 phase	c) Mitotic metaphase	d) S phase
111.	Cladode is the modifica	tion of	. 4	· •
	a) Whole stem	b) axillary bud	c) Leaf	d) Leaflets
112.	A root cap is usually ab	sent in the roots of		
	a) Hydrophytes	b) Epiphytes	c) Parasites	d) All of the above

What would be the effect of Inhibition of lactate dehydrogenase in a mammalian cell under anaerobic condition? a) A decrease in cell pH, due to the accumulation of lactic acid

b) A decrease in glycolysis, due to the lack of NAD

c) An increase in ATP production, due to increased amounts of reduced NAD.

d) An increase in the activity of the Kub cycle, due to increased amounts of pyruvate

120. The diagram summarizes the pathway of glucose breakdown.

HEXOSE J A TRIDGE PHOSPHATE JB PYRUVATE CLACTATE 1 ACETYL COA J. D 6c COMPOUND J E H20+ co2. Which two steps result in net increase of ATP? a) A and C b) A and D c) B and D d) B and E **121.** The condition necessary for vernalization are a) high temperature and water b) Low temperature and oxygen c) water and carbon – dioxide d) Oxygen and water 122. Which of the following is the example of co – dominance a) $Hb^A Hb^A$, $I^A I^B$ b) Hb^S Hb^S, I^A I^B c) Hb^A Hb^S, I^A I^B d) Hb^S Hb^S, I^A I^A **123.** Who postulated the chromosome theory of Inheritance a) De Vries b) Mendel d) Morgan c) Sutton & Boveri 124. Study the pedigree given below and assign the type of inheritance of the trait min a) X –linked recessive b) Y – linked c) autosomal recessive d) autosomal dominant

125	A normal Aa woman v	whose father was albino	marries an albino man, what	proportion of normal and albino are
	expected among their o	h) 2 normals 1 Albina	a) All albina	d) 1 normal: 1 Albino
176	a) All normal Which of the following	b) 2 normal: 1 Albino	c) All albillo	d) I normai: I Albino
120	which of the following	snow mikage group in c	ouping phase:	
	AB	АЬ	АЬ	a B
	a) a b	b) a B	c) a b	d) а Ь
127	A colourblind man mar	ries a daughter of a colou	urblind father, then in the offs	pring
	a) All sons are colourbl	ind	b) All daughters are	colourblind
	c) Half sons are colourt	olind	d) No daughters is c	olourblind
128	In DNA replication, the	e primer is		
	a) A small deoxyribonu	cleotide polymer	b) A small ribonucleotide po	olymer
	c) Helix destabilizing p	rotein	d) Enzyme taking part in joi	ning nucleotides of new strand
129	To code the 50 amino a	cids in a polypeptide cha	in, what will be the minimum	n number of nucleotides cistron?
	a) 50	b) 153	c) 306	d) 309
130	Which of the following	techniques are used in a	nalyzing restriction fragments	s length polymerphesin (RFLP):
	A) Electrophoresis	B) Electroporat	tion C) Methylation	D) Restriction digestion
	a) A and C	b) C and D	c) A and D	d) B and D
131	In a polypeptide chain o	of 125 amino acid. If the	25th codon is mutated to UAA	A, then.
	a) A polypeptide of 124	amino acid is formed	b) A polypeptide of	125 amino acid is formed
	c) A polypeptide of 24	amino acid is formed	d) Any of the above	can be possible
132	In a nucleotide H ₃ PO ₄ b	oinds to which carbon ato	om of pentose sugar.	_
	a) Only 1 st carbon	b) Only 3rd cart	c) Only 5 th carbon	d) Both 3 rd & 5 th carbon
133	Sometimes the starting	codon is GUG in place of	of AUG, GUG normally stand	s for:-
	a) Valine	b) Glycine	c) Methionine	d) Tyrosine
134	Which one of the follow	ving has found extensive	use in genetic engineering w	ork in plants
	a) Bacillus Wagulens		b) Agrobacterium tu	umefaciens
	c) Clostriduim septicum	1	d) Xanthanonas citr	i
135	Which of the following	restriction endonuclease	enzyme produce blunt end ir	n DNA:
	a) Bam HI	$G \stackrel{\downarrow}{\to} GATC \stackrel{\uparrow}{\to} C$		
	b) E CORI	$G \downarrow AATTC$		
		$GTTAA \uparrow G$		
	c) Hae – III	GG↓CC		

 $CC \uparrow GG$

SECTION B

136. The protein products of the following Bt toxin genes Cry IAC & cry II Ab are responsible for controlling				
b) Roundworm	c) Moth	d) Fruit fly		
in the treatment of				
b) Haemophilia	c) ADA deficiency	d) AIDS		
ve a disease resistant strain what	step will be taken first			
b) Selection of parents	c) Working out the yield	d) Bagging		
ce to yellow mosaic virus and po	wdery mildew were brought abou	ıt by:		
	b) Biofortification			
	d) Hybridization and selection			
vithout fertilization is called				
b) Cell culture	c) Parthenocarpy	d) parthenogenesis		
141. Which of the following require water for gamete transfer				
nd pteridophytes	b) Pteridophytes only			
	d) Angiosperms			
	f the following Bt toxin genes Cr b) Roundworm in the treatment of b) Haemophilia ve a disease resistant strain what b) Selection of parents ce to yellow mosaic virus and po vithout fertilization is called b) Cell culture grequire water for gamete transfe and pteridophytes	f the following Bt toxin genes Cry IAC & cry II Ab are responsible b) Roundworm c) Moth in the treatment of b) Haemophilia c) ADA deficiency ve a disease resistant strain what step will be taken first b) Selection of parents c) Working out the yield ce to yellow mosaic virus and powdery mildew were brought abou b) Biofortification d) Hybridization and selection rithout fertilization is called b) Cell culture c) Parthenocarpy grequire water for gamete transfer and pteridophytes b) Pteridophytes only d) Angiosperms		

d) Both and A and B

142.	Type of cell division takes place	e in Apomixis is		
	a) Reductional b) Meio	osis	c) Both a and b	d) Mitosis
143.	Ubisch bodies are (nutritive bod	lies) secreted by		
	a) Tapetum b) Exin	e	c) Microspore mother ce	d) Endothecium
144.	Assertion (A): Flowers of yucca	and moth show symbio	sis	
	Reason (R): In yucca cross-poll	ination is assisted by a m	oth that lay eggs in it.	
	a) Both A and R are true and R	is the correct explanation	n of A	
	b) Both A and R are true but R	is not the correct explana	tion of A	
	c) Both A and R are true but R	is not the correct explana	tion of A	
1 4 5	d) A is true but R is false.	1 .		
145.	The plotdy of suspensor cell of	embryo is		
146	a) Haploid	b) Diploid	c) Triploid	d) Polyploid
146.	Specialised epidermal cells surr	ounding the guard cells a	are called	
1 47	a) Complementary cells	b) Subsidiary cells	c) Bulliform cells	d) Lenticels
14/.	Chemiosmotic theory of ATP sy	ynthesis in the chloroplas	sts and mitochondria is ba	ised on:
	a) accumulation of ca ions		d) accumulation of Na ⁺¹	ions
1 1 0	c) accumulation of K lons	a aunthorized from	d) proton gradient	
148.	In Eukaryoles a single mRINA is	s synthesised from	h) Many atmistural anna	
	a) A single structural genes		d) Three structural gene	8
140	c) A single structural gene	no con ous hass so quan so	a) Three structural generation of ATCTC what would have	s s the complementary DNA strong
149.	If one strand of DNA has the fift	rogenous base sequence a	at ATCIG, what would be	e the complementary KNA strand
	a) TTACU b) UAC	CAC.		d) ATCGU
150	The tag polymerase enzyme is a	DAC	C) AACTO	d) ATCOU
130.	a) Thermus aquaticus		b) Thiobacillus farrorid	ans
	c) Bacillus subtilis		d) Pseudomonas putida	uns
	c) Daemus submis		d) I seudomontas putida	
		PART D - SECT	ZOOLOGY ION A	
151	Proboscis gland in Balanoglos.	sus is associated with		
	a) Digestion	b) Respiration	c) Circulation	d) Excretion
152	Pseudocoelomate animals bel	ong to the phylum		
	a) Platyhelminthes	b) Arthropoda	c) Mollusca	d) None of these
153	Highest degree of polymorphi	sm is found in		
	a) Protozoa	b) Cnidaria	c) Platyhelminthes	d) Arthropoda
154	The epithelial tissue present o	on the inner surface of b	pronchioles and fallopia	n tubes is
	a) Cuboidal Epithelial	b) Glandular Epithelia	l c) Ciliated Epithelial	d) Squamous Epithelial
155	The number of spiracles prese	ent in cockroaches are		
	a) 9 pairs	b) 10 pairs	c) 12 pairs	d) 14 pairs
156	Secretion of pancreatic juice is	s stimulated by		
	a) Gastrin	b) Secretin	c) Enterogasterone	d) Enterokinase
157	. The layer of cells that secretes	s enamel of tooth is		
	a) Dentoblast	b) Ameloblast	c) Osteoblast	d) Odontoblast
158	Maximum absorption of wate	r occurs in		
	a) Colon	b) Rectum	c) Large intestine	d) Small intestine
159	Which of the following disease	es are occupational resp	piratory disorders?	
	a) Silicosis, fibrosis and asbes	tosis	b) Emphysema and mo	ountain sickness
	c) Asthma and emphysema		d) Asthma and AIDS	
160	About 1200 mL of air is alway.	rs known to remain insi	de the human lungs. It is	s described as
	a) Inspiratory reserve volume		b) Expiratory reserve v	zolume
	c) Residual volume		d) Tidal volume	
161	The important function of lym	iph is to		
	a) Transport oxygen to the bra	ain	b) Transport carbon di	oxide to the lungs
	c) Return RBCs to the lymph r	odes	d) Return interstitial fl	uid to the blood
162	. The first heart sound 'Lubb' o	ccurs in which phase of	the cardiac cycle?	
	a) Isometric relaxation	b) Atrial diastole	c) Ventricular systole	d) Ventricular diastole

181. Scientific study of huma	an population is called		
a) Dramography	b) Dandrography	c) Demography	d) None of these
182. The similarity of bone s	structure in the fore limbs of n	nany vertebrates is an example	of
a) homology	b) Analogy	c) Convergent evolution	d) adaptive radiation
183. Genetic drift operates i	n		
a) small isolated popula	ation	b) Large isolated population	
c) Non-reproductive po	pulation	d) Slow reproductive populat	ion
184. Urey and Miller in their	experiment used a mixture o	a gases corresponding to primit	d) CH NH H H H
a) L_3 , NH ₃ , H ₂ , LU_2	DJ U ₂ , NH ₃ , CH ₄ , H ₂	СЈ NH3, CH4, H2O, CO2	aj CH4, NH3, H2, H2U
a) Provincia	h) Phoumatoid arthritic	c) Alzhoimor's disaaso	d) Vitiligo
	b) Kileumatolu al timus	CJ Alzhenner Suisease	uj viungo
	SECT	ΓΙΟΝ Β	
186. Which of the following	immunoglobulin's does const	itute the largest percentage in l	numan milk
a) IgA	b) IgG	c) IgD	d) IgM
187. Which one of the follow	ving is a hallucinogenic drug		
a) Caffeine	b) Morphine	c) Lysergic acid diethylamide	d) opium
188. The most common egg-	type variety used for commen	rcial production throughout the	e world is
a) Leghorn	b) Plymoth rock	c) Cornish	d) New Hampshire
189. Which of the following	belongs to free living nitroger	n fixing bacteria?	
I. Rhizobium	II. Azospirillum	III. Azotobacter	
Choose the correct opti	on		
a) I and II	b) I and III	c) II and III	d) I, II and III
190. Roquefort cheese is for	med by ripening with the fung	gi for a particular	
a) Colour	b) Flavor	c) Shape	d) Texture
191. The type of population,	where pre-reproductive anim	nals occur in large numbers, is	
a) Declining	b) Fluctuating	c) Stable	d) Growing
192. Two species occupying	same or overlapping area are	e called as	
a) Sympatric	b) Allopatric	c) Parapatric	d) Ring species
193. In primary succession i	n water, the pioneer species a	are	
a) Free floating angiosp	berm	b) Small phytoplanktons	
c) Rooted hydrophytes		d) Lichens	
194. Large unit of land havin	ng different types of plants and	d animals, is called	
a) Uniform vegetation	b) Biome	c) Ecosystem	d) Niche
195. The rate of biomass pro	oduction per unit area over a t	time period by plants during ph	otosynthesis is called
a) Gross primary produ	ictivity	b) Net primary productivity	
c) Secondary productiv	ity	d) Decomposition	
196. The total number of bio	odiversity hot spots in the wor	rld are	
a) 24	b) 12	c) 34	d) 52
197. Some of the nutrient cy	cles are labelled as below		TTT NT . 1
I. Sulphur cycle	II. Phosphorus cycle	III. Carbon cycle	IV .Nitrogen cycle
Of these, the sedimenta	ry cycle is represented by		d) I an d II
a) I only	DJ II ONIY	c) III only	a) I ana II
198. Catalytic converters are	e litted into automobiles to re-	duce the emission of narmful ga	ases. Catalytic
a) Carbon diovido and a	Nator	h) Carbon monovido	
c) Methane	Water	d) Carbon dioxide and metha	10
199 Olfactory smell area is a	present in	aj cai bon ulozide alla illetilal	
a) Frontal lohe	b) Parietal lobe	c) Temporal lobe	d) Occipital lobe
200. Which function will be	lost due to damage of occinita	l lobe?	.,
a) Hearing	b) Speech	c) Vision	d) Memorv
	-)	-,	· , ,