

MARKS: 720

FULL TEST 4 PART A - PHYSICS **SECTION A**

TIME: 3 Hrs

1. Six vectors, \vec{a} to \vec{f} have the magnitudes and directions indicated in the figures. Which of the following statements is true?

(1) $\vec{b} + \vec{c} = \vec{f}$ (2) $\vec{d} + \vec{c} = \vec{f}$ (3) $\vec{d} + \vec{e} = \vec{f}$ (4) $\vec{b} + \vec{e} = \vec{f}$

2. A man of weight W is standing on a lift which is moving downward with an acceleration 'a'. The apparent weight of the man is :-

(1) W $(1+\frac{a}{a})$

(2) W

(3) W (1- $\frac{a}{a}$)

(4) W $(1-\frac{a^2}{a^2})$

3. A ball is thrown upwards with speed 'v' from the top of a tower and it reaches the ground with a speed 3v, then the height of the tower is

(3) $\frac{V^2}{a}$

(4) $\frac{2V^2}{g}$

4. Two identical bodies are executing uniform circular motion in the paths of radii r1 and r2 respectively. If both the bodies complete one revolution in the same time interval, then the ratio of their angular speed is

(1)2:1

(2) 1 : 2

(3)1:4

(4) 1 : 1

5. A double slit experiment is performed by using light of wavelength of 6000Å. If distance of screen is 1m and slits are 0.1 cm apart then calculate angular position of 10th bright fringe.

(2) 6×10^{-3} rad

(3) 6×10^{-5} rad

 $(4) 6 \times 10^{-7} \text{ rad}$

6. If Q = $\frac{X^n}{\sqrt{m}}$ and ΔX is absolute error in the measurement of X, ΔY is absolute error in the measurement of Y, then absolute error ΔQ in Q is:-

(1) $\Delta Q = \pm \left(n \frac{\Delta X}{X} + m \frac{\Delta Y}{Y} \right)$

(2) $\Delta Q = \pm \left(n \frac{\Delta X}{X} + m \frac{\Delta Y}{Y} \right) Q$

(3) $\Delta Q = \pm \left(n \frac{\Delta X}{X} - m \frac{\Delta Y}{Y} \right) Q$

(4) $\Delta Q = \pm \left(n \frac{\Delta X}{V} - m \frac{\Delta Y}{V} \right) Q$

7. Block A of mass 30 kg. is resting on a frictionless floor. Another block B of mass 5 kg is resting on it as shown in the figure. The coefficient of static friction between the blocks is 0.4 while kinetic friction is 0.3. If a horizontal force of 175 N is applied to block B, then the acceleration of the block A will be (g = 10 m/s²):-

 $(1) 0.5 \text{ m/s}^2$

(2) 0.67 m/s^2 (3) 5 m/s^2 (4) 10 m/s^2

8. Two blocks which are connected to each other by means of a massless string are placed on two inclined planes as shown in fig. After releasing from rest, the magnitude of acceleration of the centre of mass of both the blocks is- $(g = 10 \text{ m/s}^2)$

9. A Carnot engine has efficiency 25%. It operates between reservoirs of constant temperature with temperature difference of 80K. What is the temperature of low temperature reservoir?

 $(1) -22^{\circ}C$

(2) 25°C

 $(3) -33^{\circ}C$

10. What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R?

 $2)\frac{2GmM}{3R}$

11. A hollow cylinder has a charge q coulomb within it. If ϕ is the electric flux in units of volt-meter associated with the curved surface B, the flux linked with the plane surface A in units of volt-meter will be

 $(1) \ \frac{1}{2} \left(\frac{q}{\varepsilon_0} - \phi \right) \qquad 2) \frac{q}{2\varepsilon_0} \qquad 3) \frac{\phi}{3} \qquad 4) \frac{q}{\varepsilon_0} - \phi$

12. A space craft of mass 'M' is moving with velocity V and suddenly explodes into two pieces of part of it of mass 'm' comes to rest, then the velocity of other part will be

 $(1)\,\frac{mV}{M-m}$

 $(2)\frac{(m+M)V}{m} \qquad \qquad (3)\frac{MV}{M-m}$

 $(4) \frac{MV}{m+M}$

13. A man of mass M stands at one end of a plank of length I, which lies at rest on a frictionless surface. The man walks to the other end of plank, if mass of plank is 3M, the distance moved by the man relative to the ground is-

(1) $\frac{1}{4}$ (2) $\frac{31}{4}$ (3) $\frac{21}{3}$ (4) $\frac{1}{3}$ 14. In the given figure a = 16 m/s² represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time, then the speed of the particle is (in m/s)

 $(1)2\sqrt{5}$

(3) $2\sqrt{3}$

(4) $5\sqrt{3}$

15. The total mechanical energy of a particle in SHM is :-

1) Always constant 2) Depend on time 3) $\frac{1}{2}$ $KA^2\cos^2(\omega t + \phi)$ 4) $\frac{1}{2}$ $mA^2\cos^2(\omega t + \phi)$

16. Consider a man standing in an elevator that is accelerating upwards. The upward normal force N exerted by the elevator floor on the man is

(1) smaller than the downward force of gravity on the man

(2) larger than the downward force of gravity on the man

(3) twice to downward force of gravity on the man

(4) identical to the downward force of gravity on the man

17. In the given circuit :-

- 1) Charge on C_1 is zero 2) Charge on C_1 is 80 μ C 3) Charge on C_2 is 40 μ C 4) Charge on C_2 is 20 μ C
- **18.** Shown in the figure is a circular loop of radius r and resistance R. A variable magnetic field of induction $B = B_0 e^{-t}$ is established inside the coil. If the key (K) is closed, the electrical power developed right after closing the switch is equal to

- 19. A flint glass prism and a crown glass prism are to be combined in such a way that the deviation of the mean ray is zero. The refractive index of flint and crown glasses for the mean ray are 1.620 and 1.518 respectively. If the refracting angle of the flint prism is 6.0°, what would be the refracting angle of the crown prism?
 - (1) 6.0° (2) 10° (3) 7.2° (4) 4°
- **20.** A light whose frequency is equal to 6×10^{-14} HZ is incident on a metal whose work function is 2 eV. [h = 6.63×10^{-34} Js, 1 eV = 1.6×10^{-19} J). The maximum energy of the electrons emitted will be:
 - (1) 2.49 eV (2) 4.49 eV (3) 0.49 eV (4) 5.49 eV
- 21. Electric potential at an equatorial point of a small dipole with dipole moment P (r, distance from the dipole) is: 1) Zero
 2) P / (A) P / (A) P / (B) P /
- 1) Zero 2) $\frac{P}{4\pi\epsilon_0 r^2}$ 3) $\frac{P}{4\pi\epsilon_0 r^3}$ 4) $\frac{2P}{4\pi\epsilon_0 r^3}$ 22. In the circuit shown, a potential difference of 30V is applied across AB. The potential difference between the points M and N is :-
- **23.** A conducting bar is pulled with a constant speed v on a smooth conducting rail. The region has a steady magnetic field of induction B as shown in the figure. If the speed of the bar is doubled then the rate of heat dissipation will:-

(1) Remain constant (2) Become quarter of the initial value (3) Become four fold (4) Get doubled

			O DOCULOU			
24.	. When 2 amperes current is passed through a tangent galvanometer, it gives a deflection of 30°. For 60° deflection, the current must be					
	(1) 1 amp	(2) $2\sqrt{3}$ amp	(3) 4 amp	(4) 6 amp		
25.	If the kinetic energy of the p			• • •		
	wavelength of the particle i		,			
	(1) 25 %	(2) 75 %	(3) 60 %	(4) 50 %		
26.	The displacement-time grap	` '	` '	• •		
60° with the time axis. The ratio of velocities of $V_{\hbox{\scriptsize A}}$: $V_{\hbox{\scriptsize B}}$ is :-						
	1) 1 : 2	2) 1 : √3	3) √3 : 1	4) 1: 3		
27.	When a spring is stretched by	•	•	•		
	energy will be increased by	, . ,		, , , , , , , , , , , , , , , , , , , ,		
	(1) 100 J	(2) 200 J	(3) 300 J	(4) 400 J		
	•			. ,		
28.	A fly wheel of moment of in					
	string is wrapped around it a					
	(1) 10 rad s ⁻¹	(2) 5 rad s ⁻¹	(3) 20 rad s ⁻¹	(4) 25 rad s ⁻¹		
29.	A rod is placed on a smooth		e stress developed when te	emperature is increased by		
	$40^{\circ} \text{ C} \left[\alpha = 5 \times 10^{-5} {}^{\circ}\text{C}^{-1}, \gamma = 10^{-5} {}^{\circ}\text{C}^{-1} \right]$	_	/2\ 4011 N/2	(4) 7		
20	(1) 10 ⁹ N/m ²	$(2) 2 \times 10^9 \text{ N/m}^2$		(4) Zero		
30.	Two waves coming from two					
	maximum intensity to the mi	(2) 25 : 16	(3) 9 : 4	(4) 5 : 1		
21	For the velocity-time graph s		` '	` '		
J 1.	seconds of its motion is what		-	-		
	B C	e maderon or the total t	instance covered by it in an	seven seconds.		
	20 B					
	(m/s) 15 - (m/s) 5 - A	\				
	5 5					
	0 A/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>, \D</u> 6 7				
	Time →	1 1	2) ¹	1 1		
		1) $\frac{1}{2}$,T	4) $\frac{1}{16}$		
32.	What is the value of linear ve		$f + k$ and $f = 5\hat{\imath} - 6\hat{\jmath} + 6$	k:-		
			3) $4\hat{i} - 13\hat{j} + 6\hat{k}$			
33.	A force $\vec{F} = 3\hat{\imath} + b\hat{\jmath} + 2\hat{k}$ actin		a displacement \vec{s} = -4 \hat{i} + 2 \hat{j}	$+3\hat{k}$ in its own direction, if		
	the work done is 6J, then the	e value of 'b' is				
	(1) 12	(2) 6	(3) 1	(4) 0		
34.	Two springs have their force					
	(1) equal work is done in case	· -	• •	one in case of first spring		
	(3) more work is done in case	· -		e in case both the springs		
35.	A wire is stretched between					
	Hz. The mass of the wire is 30	o g and its linear densi	ty is 4×10^{-2} kg/m. The spe	eeu of the transverse wave		
	at the string is	2) E0 ms ⁻¹	2) 75 mc ⁻¹	4) 100 mc ⁻¹		
	1) 25 ms ⁻¹	2) 50 ms ⁻¹	3) 75 ms ⁻¹	4) 100 ms ⁻¹		

SECTION B

36.	A 4 kg body moving with a speed of 2 m/s collides with a spring bumper of negligible mass and for	rce
	constant 100 Nm ⁻¹ . The maximum compression of the spring is	

1) 1.6 m

2) 0.4 m

3) 2 m

4) 0.8 m

37. The position vector of three particles of mass $m_1 = 1 \text{kg}$, $m_2 = 2 \text{kg}$ and $m_3 = 3 \text{kg}$ are $\overrightarrow{r_1} = (\hat{\imath} + 4\hat{\jmath} + \hat{k}) \text{m}$, $\overrightarrow{r_2} = (\hat{\imath} + 4\hat{\jmath} + \hat{k}) \text{m}$ $+\hat{j}+\hat{k}$)m and $\overrightarrow{r_3}=(2\hat{\imath}-\hat{\jmath}-2\hat{k})$ m respectively. Then the position vector of their centre of mass is $1)\frac{1}{2}(3\hat{\imath}+\hat{\jmath}-\hat{k})$ m $2)\frac{1}{2}(3\hat{\imath}-\hat{\jmath}-\hat{k})$ m $3)\frac{1}{2}(\hat{\imath}-3\hat{\jmath}+\hat{k})$ m $4)\frac{1}{2}(\hat{\imath}+\hat{\jmath}-3\hat{k})$

4) $\frac{1}{2}$ ($\hat{i} + \hat{j} - 3\hat{k}$)m

38. A sinusoidal voltage $V_0 \sin \omega t$ is applied across a series combination of resistance R and inductance L. The amplitude of the current in this circuit is:

1) $\frac{V_o}{\sqrt{R^2+\omega^2L^2}}$

2) $\frac{V_o}{\sqrt{R^2 - \omega^2 L^2}}$ 3) $\frac{V_o}{\sqrt{R + \omega L}}$

39. According to Newton Laws of cooling, the rate of cooling of a body is proportional to the

1) temperature of the surroundings

2) fourth power of the temperature of the body

3) difference of the temperature of the body and surroundings

4) temperature of the body

40. Pure Si at 500 K has equal number of electron (n_e) and hole (n_h) concentrations of 1.5 × 10¹⁶ m⁻³. Doping by indium increases n h to 4.5×10^{22} m⁻³. The doped semiconductor is of

1) n-type with electron concentration n $_{\rm e}$ = 2.5 × 10²³ m⁻³

2) p-type having electron concentration $n_e = 5 \times 10^9 \text{ m}^{-3}$

3) n-type with electron concentration n $_{e}$ = 5 × 10 22 m $^{-3}$

4) p-type with electron concentration n $_{\rm e}$ = 2.5 × 10¹⁰ m⁻³

41. Two block of masses 2 kg and 1 kg respectively are tied to the ends of a string which passes over a light frictionless pulley. The masses are held at rest at the same horizontal level and then released. The distance traversed by center of mas in 3 seconds is $(g = 10 \text{ m/s}^2)$

(1) 5 m

(2) 45 m

(3) 10 m

42. If the angular momentum of an electron is \vec{j} then the magnitude of the magnetic moment will be :-

3) eJ2m

43. The value of R is changed then:

1) Voltage across L remain same

2) Voltage across C remain same

3) Voltage across L-C combination remains same

4) Voltage across L-C combination changes

44. Light of wavelength 6000Å is incident on a slit of width 0.30 mm. The screen is placed 2m from slit. Find position of the first minima.

 $(1) 4 \times 10^{-3} \text{ m}$

 $(2) 4 \times 10^{-4} \text{m}$

 $(3) 4 \times 10^{-6} \text{ m}$

 $(4) 4 \times 10^{-5} \text{ m}$

		PATH T	ro success			
45.	Which of the following state	ment true :-				
	(1) Doping of pure Ge with a	trivalent impurity give	en n-type semiconduc	tor		
	(2) Resistivity of pure Ge inci	eases with temperatu	ire			
	(3) Majority carriers in p type	e semiconductor are h	oles			
	(4) Doping of pure Ge with a	pentavalent impurity	increases its resistivity	У		
46.	A car moves a distance of 20	0m. It covers first half	of the distance at spe	ed 60 kmh ⁻¹ and the second half		
	at speed v. If the average spe	eed is 40 kmh ⁻¹ , the va	lue of v is			
	a)30 kmh $^{-1}$ b) 13 kmh $^{-1}$ c) 60 kmh $^{-1}$ d) 40 kmh $^{-1}$					
47.	Two capacitors of capacitano	ce 2μF and 4μF respec	tively are connected in	n series. The combination is		
	connected across a potentia	difference of 10v. The	e ratio of energies sto	red by capacitors will be		
	a) $1:\sqrt{2}$	b) 2:1	c) 1:4	d) 4:1		
48.	The vertical component of th	ne earth's magnetic fie	eld is zero at a place w	here the angle of dip is		
	a)0 ⁰	b) 45 ⁰	c) 60 ⁰	d) 90 ⁰		
49.	A wave travelling along the x	a-axis is described by tl	he equation $y(x,t) = 0$.	005 cos (αx-βt). If the wavelength		
	and the time period of the w	ave are 0.08m and 2.0	Os, respectively, than o	lpha and eta in appropriate unit are		
	a) 25.00π , βπ	b) $\alpha = \frac{0.08}{\pi}$, $\beta = \frac{2.0}{\pi}$	c) $\alpha = \frac{0.04}{\pi}$, β	$=\frac{1.0}{\pi}$ d) $\alpha = 12.5\pi$, $\beta = \frac{\pi}{2.0}$		
50.	A machine gun fires n bullets	s per second, each of r	nass m. If the speed o	f each bullet is u, then the force		
	of recoil is	. ,	•	,		
	a) mng	b) <i>mnv</i>	c) mnvg	d) $\frac{mnv}{a}$		
	, 3	,	, 3	, g		
			CHEMISTRY CTION A			
		SEC	ZHONA			
51.	The statements, which is/are	correct:				
	a) Number of total nodes in an		b) Number of radial no	odes in an orbital $= n - l - 1$		
	c) Number of angular nodes in		d) All of the above			
52.	· ·		•	he uncertainty in its position will		
	be			р соли		
	a) 1.50×10^{-28} m	b) 1.05×10^{-26} m	c) 5.27×10^{-30} m	d) 5.25×10^{-28} m		
53.	For alkali metals, which one	•	•	3, 3.22 // 25		
	a) Hydration energy: Li > Na > k		sation energy: Li > Na >	K > Rb		
	c) Density: Li < Na < K < Rb	•	mic size: Li < Na < K < Rb			
54.	Atomic radii of fluorine and n	•				
J	a) 0.72, 1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72		
55.	•	•		10^{-30} C – m, the percentage of		
<i>JJ</i> .	ionic character in the molecu		aipoio momont 3.12 A	10 6 m, the percentage of		
	a) 10%	b) 16%	c) 18%	d) 20%		
	,	, - , -	,	,		

According to MO theory, which of the following lists ranks the nitrogen species in terms of increasing bond

a) $N_2^- < N_2^{2-} < N_2$ b) $N_2^- < N_2 < N_2^{2-}$ c) $N_2^{2-} < N_2^- < N_2$ d) $N_2 < N_2^{2-} < N_2^-$

56.

6 | Page

57. Gases X, Y, Z, P and Q have the van der Waals' constants a and b (in CGS units) as shown below

6 6 20 0.05 30 а

0.025 0.15 0.1 0.02 0.2

The gas with the highest critical temperature is

a) P

b) 0

c) Y

- d) Z
- A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system 58.

- b) Decreases by 6 kJ
- c) Decreases by 14 kJ d) Increases by 14 kJ
- Given that $\Delta H_{r298 \text{ K}} = -54.07 \text{ kJ mol}^{-1}$ and $\Delta S_{r298 \text{ K}}^{\circ} = 10 \text{ J mol}^{-1}$ and $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$. The value of 59. $\log_{10} K$ for a reaction, $A \rightleftharpoons B$ is:

a) 5

b) 10

c) 95

- d) 100
- 60. Heat of combustion of CH_4 , C_2H_4 , C_2H_6 are -890, -1411 and -1560 kJ/mol respectively. Which has the lowest calorific fuel value in kJ/g?

a) CH₄

- b) C_2H_4
- c) C_2H_6
- d) All same
- Solubility product constant $[K_{sp}]$ of salts of types MX, MX_2 and M_3X at temperature 'T' are 61.
 - 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively. Solubilities (mol, dm⁻³) of the salts at temperature 'T' are in the order
 - a) $MX > MX_2 > M_3X$ b) $M_3X > MX_2 > MX$ c) $MX_2 > M_3X > MX$ d) $MX > M_3X > MX_2$
- A buffer solution is prepared by mixing 0.1 M ammonia and 1.0 M ammonium chloride. At 298 K, the 62. pK_h of NH₄OH is 5.0.The pH of the buffer is

a) 10.0

- c) 6.0

- d) 8.0
- The graph relates $\ln K_{eq} vs \frac{1}{r}$ for a reaction. The reaction must be: 63.

- a) Exothermic
- b) Endothermic
- c) ΔH is negligible
- d) Highly spontaneous at ordinary temperature
- 64. The eq. wt. of $Na_2S_2O_3$ as reductant, in the reaction, $Na_2S_2O_3 + 5H_2O + 4Cl_2 \rightarrow 2NaHSO_4 + 8HCl$:
 - a) (Mol. wt.)/1
- b) (Mol. wt.)/2
- c) (Mol. wt.)/6
- d) (Mol. wt.)/8

- 65. Permutit is:
 - a) Hydrated sodium aluminium silicate
- b) Sodium hexa meta-phosphate

c) Sodium silicate

- d) Sodium meta-aluminate
- Na_2CO_3 can be manufactured by Solvay process but K_2CO_3 cannot be prepared because: 66.
 - a) K₂CO₃ is more soluble

- b) K₂CO₃ is less soluble
- c) KHCO₃ is more soluble than NaHCO₃
- d) KHCO₃ is less soluble than NaHCO₃
- Which one of the following order of stability is correct? 67.
 - a) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$
- b) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$
- c) $MgCO_3 > BaCO_3 > SrCO_3 > CaCO_3$
- d) $CaCO_3 > BaCO_3 > MgCO_3 > SrCO_3$

- 68. The correct Lewis acid order for boron halides is:
 - a) $BF_3 > BCl_3 > BBr_3 > BI_3$
 - c) $BI_3 > BBr_3 > BCl_3 > BF_3$

- b) $BCl_3 > BF_3 > BBr_3 > BI_3$
- d) $BBr_3 > BCl_3 > BI_3 > BF_3$

- The correct formula of borax is: 69.
 - a) $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$
- b) $Na_2B_4O_7 \cdot 4H_2O$
- In SiF₆²⁻ and SiCl₆²⁻which one is known and why?
- a) SiF₆²-because of small size of F
- c) SiCl₆²-because of small size of Cl

- b) SiF₆²-because of large size of F
- d) SiCl₆²⁻because of large size of Cl

a)
$$CI + aq. \text{ KOH} \longrightarrow OH$$
SO₃H

The addition reaction among the following is

$$+ H_2SO_4 \longrightarrow SO_3H$$

- d) All of the above
- The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound **72.**
 - a) $Fe_4[Fe(CN)_6]_3$
- b) $Na_3[Fe(CN)_6]$
- c) $Fe(CN)_3$ d) $Na_4[Fe(CN)_5NOS]$

c) $Na_2[B_4O_5(OH)_4] \cdot 10H_2O$ d) $Na_2B_4O_7 \cdot 8H_2O$

In the compound, 73.

70.

71.

Configuration at C_2 and C_3 atoms are

- a) S. S
- b) R.S

- d) R.R

74. Consider the following carbanions

(II)
$$O_2N \longrightarrow \overline{C}H_2$$

Correct order of stability is

- a) I > II > III
- b) III > II > I

- c) || > ||| > |
- d) I>III>II

- **75.** Propane cannot be prepared from which reaction?
 - a) $CH_3 CH = CH_2 \xrightarrow{H_2/Ni}$

b) $CH_3CH_2CH_2I \xrightarrow{HI}$

c) $CH_3CH_2CH_2COONa \xrightarrow{NaOH/CaO,\Delta}$

- d) None of the above
- 76. Which of the following reagent can distinguish between 1-butyne and 2-butyne?
 - a) Aqueous NaOH
- b) Bromine water
- c) Fehling's solution
- d) Ammoniacal AgNO₃

Predict structure of *X* in following reaction 77.

+
$$CH_3CH_2CH_2Cl$$
 $\xrightarrow{AlCl_3}$ X is

 $\xrightarrow{\text{Hg}^{2+}/\text{H}^+}$ A. A is: $Ph-C \equiv C-CH_3 + H20$ 78.

79. on reductive ozonolysis gives

COCH₃

d) None of these

80. The correct structure of the drug paracetamol is

ЙНСОСН₃ b)

COCH₃ d)

81. The catalyst used in the polymerization of high density polythene is

a) Titanium oxide

b) Titanium isoperoxide

c) Lithium tetrachloride and triphenyl aluminium

d) Titanium tetrachloride and trimethyl aluminium

82. Which is used for making rayon (artificial silk)?

b) Cellulose

c) Terephthalic acid

d) Adipic acid

83. In the following reaction sequence predict the compound X and Y.

The compound X and Y are

$$H_2$$
 Br and CH_3 Br

84. In the compound given below, the correct order of acidic nature of the positions (X), (Y) and (Z) is:

a) Z > X > Y

b) X > Y > Z c) X > Z > Y

d) Y > X > Z

- 85. What volume of CH₄ at NTP is formed when 20.5 g of CH₃COONa is treated with sodalime?
 - a) 4.4 litre
- b) 2.2 litre
- c) 3.2 litre
- d)5.6 litre

SECTION B

$$CH_2OH$$
 + cyclopentanone \longrightarrow [X].

86. CH₂OH

Product is

- 87. In the Cannizzaro's reaction given below, 2Ph— $CHO \xrightarrow{OH^-} Ph$ — $CH_2OH + PhCOO^-$ the slowest step is:
 - a) The attack of OH⁻at the carbonyl group
- b) The transfer of hydride to the carbonyl group
- c) The abstraction of proton from the carboxylic acid
- d) The deprotonation of Ph—CH₂OH
- 88. The final product of the following reaction is/are

OH OH COOK

- 89. What amount of bromine will be required to convert 2 g of phenol into 2, 4, 6-tribromo phenol?
 - a) 4.00

- b) 6.00
- c) 10.22
- d) 20.44
- 90. The compound on dehydrogenation gives a ketone. The original compound is
 - a) Primary alcohol
- b) Secondary alcohol
- c) Tertiary alcohol
- d) Carboxylic acid

- 91. The complex used as an anticancer agent is
 - (a) trans $-[Co(NH_3)_3Cl_3]$
- (b) cis $-[PtCl_2(NH_3)_2]$
- (c) $Cis K_2[PtCl_2Br_2]$
- (d) Na₂CO₃
- 92. Which reagent is useful in increasing the carbon chain of an alkyl halide?
 - a) HCN

- b) KCN
- c) NH₄CN
- d) AgCN
- 93. Chloroform on reaction with conc. HNO₃ gives an insecticide and war gas known as:
 - a) Chloropicrin
- b) Nitromethane
- c) Picric acid
- d) Acetylene
- **94.** A solid has structure in which 'W' atoms are located at the corners of a cubic lattice 'O' atoms at the centre of edge and Na atoms at the centre of cube. The formula for the compound is
 - a) Na₂WO₃

- b) Na₂WO₂
- c) NaWO₂
- d) NaWO₃

95.			by dissolving 18 g o	glucose in 90 g of water. The rela	ative
	lowering in vapour pressi		-) 1	4) 20	
	a) 0.01	b) 0.02	c) 1	d) 20	
96.	$\Lambda_{\text{ClCH}_2\text{COONa}}^{\infty} = 224\Omega^{-1} \text{ cr}$				
	$\Lambda_{\text{NaCl}}^{\infty} = 38.5\Omega^{-1} \text{ cm}^2 \text{ g eq}$				
	$\Lambda_{\rm HCl}^{\infty} = 203\Omega^{-1} \rm cm^2 g equ$		<u>~</u>		
	a) $288.5\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$	r l	b) $289.5\Omega^{-1}~{ m cm^2~g~ec}$	uiv ⁻¹	
	b) $388.5\Omega^{-1} \text{ cm}^2 \text{ g equiv}^-$	·1	d) $59.5\Omega^{-1}~\mathrm{cm^2}~\mathrm{g}~\mathrm{equ}$	iiv ⁻¹	
97.	If the ΔG of a cell reaction	n AgCl + e^- → Ag + Cl ⁻	$^{-}$ is -21.20 kJ, the s	tandard emf of cell is	
	a) 0.239 V		c) -0.320 V	d) -0.110V	
98.	The rate constant of a first	st order reaction is 4 ×	$< 10^{-3} \mathrm{sec}^{-1}$. At a rea	ctant concentration of 0.02 M, the	rate
	of reaction would be:			,	
		b) $4 \times 10^{-3} M \text{ sec}^{-1}$	1 c) $2 \times 10^{-1} M$ s	\sec^{-1} d) $4 \times 10^{-1} M \sec^{-1}$	
99.	-	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	$^{5}s^{-1}$. If the rate is $2.4 \times 10^{-5} molL$	-1 _S -1
55.	then the concentration of		02 1 02 10 010 77 10		J
	a) 0.04	b) 0.8	c) 0.07	d) 1.4	
100	Which inert gas has the h	•	c, 0.07	a, 1. i	
100.	a) Xe	b) Kr	c) Ar	d) Ne	
	uj Ac	o, m	C) III	a) ite	
		PA	RT C – BOTANY		
			SECTION A		
101	The number of glucose m	nolecules required to	nroduce 38 ATP mo	lecules under anaerobic condition	s hy a
101.	yeast cells is	iolecules required to	produce 30 ATT IIIO	icedies under anacrobie condition	3 Dy a
	1) 2	2) 1	3) 19	4) 38	
102	Which of the following re	•	•	•	
102.	1) C ₅₅ H ₁₇₂ O ₆ N ₄ Mg	2) C ₅₅ H ₇₂ O ₅ N ₄ Mg			
102	What does proton motive		3) C5511/2O41 4 11	4) C5511/0O61441VIg	
103.	1) It is another name for		horylation		
	2) It refers to the pumpir	• •	•		
			•	ophyll of chloroplast photosystem	
	•			s protons into the matrix throug	
	synthase complex	inca ciccirociicimicai	gradient that anve	s protons into the matrix throug	
104	Siphonogamy occurs in				
104.	• • •	Gymnosnerms only	3) Gymnosnarms an	d angiosperms 4) Angiosperms or	alv
105	(A): Tracheids constitute	• • •		a anglosperms +/ Anglosperms of	ıı y
105.	(R): Tracheids are absent	•	gyппоэрстпэ		
	1) Both (A) and (R) are tre		ct explanation of (A)		
		` '	•		
	2) Both (A) and (R) are tro 3) (A) is true but (R) is fal	• •	Both (A) are (R) wro	• • •	
106		·		າຮູ. ວe A and M (The wife's parents we	oro A 🖪
100.				lood group is codominant)	i e Ab
		= ::			
	1) AA-MN 2)) AO-MN	3) AB-MN	4) BB-MN	

107.	Diffusion pressure of pure s	olvent is:			
	1) Always more than its solu	ution	2) Sometimes more than its solution		
	3) Less than its solution		4) Equal to its solution		
108.	The ratio of phloem, Xylem	and cambium groups re	espectively in the vascular bu	ndle of monocot stem is	
	1) 1:1:1	2) 1:0:1	3) 1 : 1 : 0	4) 1 : 1 : 2	
109.	Collenchyma is found as sul	o-epidermal tissue in th	e following plants except		
	1) Petunia alba	2) Helianthus annuus	3) Zea mays	4) Pisum sativum	
110.	Glycolate accumulates in ch	loroplasts, when there	is		
	1) High CO ₂	2) Bright light	Low temperature	4) Low CO ₂	
111.	The first cell of the gametor	phytic generation is			
	1) Meiocyte	2) Meiospore	3) Gamete	4) Zygote	
112.	(A): In definite inflorescend	e, flowers are arranged	l in basipetal manner		
	(R): In basipetal arrangement	nt, older flowers are at	base and younger flowers are	e at the top.	
	1) Both (A) and (R) are true	and (R) is the correct e	xplanation of (A)		
	2) Both (A) and (R) are true	and (R) is not the corre	ct explanation of ((A)		
	3) (A) is true but (R) is false		4) Both (A) are (R) w	rong.	
113.	In which of the following pla	ants, ovule does not co	ntain integuments?		
	1) Cycas	2) Mangifera	3) Loranthus	4) Lily	
114.	A bivalent of Meiotic proph	ase-I consists of			
	1) Two chromatids -One cer	ntromere	2) Two chromatids - Two ce	ntromere	
	3) Four chromatids - Two ce		4) Four chromatids - Four ce		
115.	_	=	ne but it will eventually die be		
	1) Water will not move upw	rards	2) Water will not move dow	nwards	
	3) Sugars and other organic				
	4) Sugars and other organic	materials move upwar	ds		
116.	Match the column				
	Column I		mn II		
	I. Bio piracy		ne therapy		
	II. Retrovirus	· · · · · · · · · · · · · · · · · · ·	gal use of biological materials		
	III. Biopatent		nt granted for biological entit	ies	
	IV. Kohler and Milstein		noclonal antibody		
	1) I-B, II-A, III-D, IV-C	2) I-B, II-A, III-C, IV-D	3) I-B, II-C, III-A, IV-D	4) I-D, II-A, III-B, IV-C	
117.	Common character found in	•	->		
	1) Reticulate venation	2) Compound leaves	•	4) Simple leaves	
118.	Which part of the tobacco p	' - '		1	
	1) Stem	2) Root	3) Leaf	4) Flower	
119.	-		pro-toxin is converted into a		
	1) Action of gut micro-organ	nism	2) Presence of conversion fa	actors in insect gut	
	3) pH > 7 in the insect gut		4) pH < 7 in the insect gut		
120.	The total sum of chromatid	-			
	I) The sum of chromatids of	_			
	II) The total sum of chromat	•	•		
	III) The total sum of chroma	•	•	4) 0	
	1) &	2) I & III	3) &	4) I, II & III	

121.	A male rabbit of genotype	'AABBDDEE' is crossed	with a female rabb	it of genotype 'aabbddee' to produ	ce
	F1 hybrid offspring. How m	any genetically differer	nt gametes can be p	produced by this F1 hybrid?	
	1) 4 2) 8	3) :	16	4) 32	
122.	Suppose the experiment of	f Meselson and Stahl wa	as performed on a s	sample of 8 cells, each cell containing	ng
	one nucleoid that had bee	en growing on normal I	N-14 medium. You	then grew cells for 3 generations	in
	medium containing N-15. 7	he outcome would be a	after 3 generations		
	1) 32 cells with N-14 & N-1	5 heteroduplex and 32	cells with N-15 hon	noduplex	
	2) 16 cells with N-14 & N-1	5 heteroduplex and 48	cells with N-15 hon	noduplex	
	3) 24 cells with N-14 & N-1	5 heteroduplex and 40	cells with N-15 hon	noduplex	
	4) 8 cells with N-14 & N-15	heteroduplex and 56 c	ells with N-15 home	oduplex	
123.	A: All elements found in th	e plant body satisfy the	criteria of essentia	lity	
	R: Both essential and non-	essential elements are a	bsorbed by plants	from soil	
	1) Both (A) and (R) are true	and (R) is the correct e	xplanation of (A)		
	2) Both (A) and (R) are true	and (R) is not the corre	ect explanation of (۹)	
	3) (A) is true but (R) is false				
	4) (A) is false but (R) is true	!			
124.		· · · · · · · · · · · · · · · · · · ·	-	l r-RNA from sunflower are taken ar	
		•		le synthesized will be of the nature	of
	•	•		4) Sunflower	
125.	Assertion: Living systems h			ing entropy.	
	Reason: Living systems are				
	I) Both A and R are correct	•			
	2) Both A and R are correct	but R is not the correct	t explanation of A.		
	3) A is true but R is false.				
	4) R is true but A is false				_
126.	= :	nat are involved in reco	mbinant DNA tech	nology – arrange them in the corre)CI
	order				
	I. Transfer the r-DNA into t			A From the selected organism	
	III. Fragmentation of DNA k		IV. Ligation of DN		
127	1) , V, ,	2) I, IV, II, III	3) II, III, IV, I	4) IV, III, I, II	
12/.	Which of the following is n			(4) Dintoro	
120	(1) Primata	(2) Poales	(3) Insecta	(4) Diptera	
120.	When water is added to a l	= =		e amount of solute	
	1) Increase in free energy f3) Increase in pressure pot		4) Increase in wat		
120	The hormone produced du		•	•	
129.	(1) Adenine derivative	illig auverse environnie	(2) Terpenoid der		
	(3) Indole derivative		(4) Carotenoid de		
120	A fern differs from a moss	in havinα	(4) Caroteriola de	Tivative	
130.	1) Swimming archegonia	iii iiaviiig	2) Swimming antl	porozoids	
	3) Independent gametophy	rt o c	4) Independent s		
121	The correct sequence of th		+) illucpelluciil S	σοιοριίγιες	
131.	(1) Assimilation, fixation, a		— tion denitrification		
	(2) Fixation, assimilation, a				
	(L) i ination, assimilation, a	mmommeation, mitilita	don, demunication	i	

	(3) Nitrification, assimilation, fixation, denitrification, ammonification (4) Fixation, ammonification, assimilation, denitrification, nitrification						
132	Pick the right difference			memedelon			
152.	-			and phosphate	4) Sugar and pyrimidine		
133.	1) Sugar and phosphate 2) Sugar and purine 3) Purine and phosphate 4) Sugar and pyrimidine Which of the following statements best describes DNA polymerase?						
100.	1) It is an enzyme required to glue pieces of DNA polymer fragments together						
	2) It is an enzyme required to produce a primer needed for DNA replication						
	3) It is an enzyme that catalyzes the addition of nucleotides to the 5' end of a growing DNA strand						
					of a growing DNA strand		
134.		=			nthesis was given by		
	1) Hill	2) Blackman		erson	4) Arnon		
135.	Which of the follow	•	ypass stratification	າ?	•		
	(1) Auxin	(2) Cytokinin	(3) G	ibberellins	(4) Ethylene		
			SECTION	В			
136.	A pure tall plant wa	as grown in nutrient	deficient soil and	remained dwar	f. When it is crossed with d	lwarf	
	plant, the F ₁ will be	J					
	1) 100% dwarf	2) 100% tall	3) 50% tall ar	nd 50% dwarf	4) 75% tall and 25% dwar	f	
137.	Seed formation witl	•	•		•		
	1) Somatic hybridiza			orulation	4) Budding		
138.	Atlas-66 is a variety	of					
	1) Maize	2) Barley	3) Wh	ieat	4) Rice		
139.	Any part of the plan	nt which is introduc	ed to the culture r	nedium to grow	into full-fledged plant or or	rgans	
	in vitro is called						
	1) Propagule	2) Clone	3) Pla		4) Explant		
140.	Chromosome numb respectively are	er in endosperm ce	l of plant 'x' and th	ne gamete of pla	nt 'y' are equal. Plants 'x' ar	าd 'y'	
	1) Apple and rice	Maize and pot	ato 3) Ric	e and onion	4) Onion and potato)	
141.	Monoecious conditi	ion is found in					
	1) Papaya	2) Pinus	3) Dat	te palm	4) Cycas		
142.	Which of the follow	-					
	1) Bacteria	2) PPLO	3) Dia		4) Bacteriophage		
143.	In Solanaceae mem						
	1) Thalamus	2) Petal	3) An	ther	4) Stigma		
144.	Agaricus belongs to						
	1) Ascomycetes	2) Phycon	nycetes 3) Bas	sidiomycetes	4) Deuteromycetes		
145.	Plastids are totally a	absent in					

2) Blue green algae

2) Cyanobacteria

2) Linnaeus

146. Who is considered as the Darwin of 20th century?

3) Bacteria

3) Ernst Mayr

3) Deuteromycetes

1) Fungi

1) Newton

147. Red tides are due to 1) Chrysophytes

4) All of these

4) T. H. Morgan

4) Dinoflagellates

148.	Identify the vascular cryptog	am		
	1) Anthoceros	2) Adiantum	3) Cycas	4) Aloe
149.	Competitive inhibitor of Succ			
	1) Mevalonic acid	2) Myristic acid	3) Malonic acid	4) Malic acid
150.	Study the following table and	•		00 81
	I. Stroma of the chloroplast		e-stranded DNA	80s Ribosomes
	II. Chromoplasts	Carotenoid pi	gments	Water soluble
	III. Chloroplast	Thylakoids		Stroma lamellae
	IV. Peroxisomes	Glyoxysomes	2)	Microbodies
	1) I, II	2) II, III	3) III, IV	4) I, IV
		PART D	– ZOOLOGY	
		SEC	CTION A	
151.	Which of the following is bila	aterally symmetrical du	ring larval stage and r	adially symmetrical during adult
	stage?			
	(a) Cuttle fish	(b) Star fish	(c) Jelly fish	(d) Silver fish
152.	Match the locomotor organs	given under Column I	with the group listed	under Column II & select the
	scorrect option from the cod	les given below		
	Column I	Column II		
	a) Pseudopodia	i) mollusca		
	b) Combplates	ii) chondrichth	iyes	
	c) Foot	iii) protozoa		
	d) Fins	iv) Ctenophora	a	
	(1) a - (iii) b - (i) c - (iv) d	- (ii)	(2) a - (i) b - (iii) c	- (iv) d - (ii)
	(3) a - (iv) b - (iii) c - (ii) d	l - (i)	(4) a - (iii) b - (iv) c -	(i) d - (ii)
153.	Moulting in arthropods facili	tates		
	(a) Protection	(b) Reproduction	(c) Growth	(d) Communication
154.	All of the following Characte	rs are shared by crocod	·	
	(a) Extra embryonic membra	nes	(b) Dry Skin	
	(c)Homeothermy		(d) Four chambered h	neart
155.	Thrombocytes secrete			
	(a) Fibrinogen	(b) Prothrombin	(c)Thromboplastin	(d) Fibrin
156.	The Nissl's bodies of cyton re	epresent		
	(a) Golgi complex of neuron		(b) RER, the sites of p	·
	(c) Nucleus, site of synthesis		(d) SER, the site of lip	ids
157.	Amount of urea excreted of	,	/ \ 400 !!!	(1) 40 45
	• • • • • • • • • • • • • • • • • • • •	-30 gm	(c) 180 lit	(d) 10-15 gms
158.	Cockroach nymph undergoes		=	(I) a
	(a) 10	(b) 13	(c) 12	(d) 8
159.	In male Cockroach sperms ar	=		
	(a) Testes	(b) Vas deferens	• •	(d) Mushroom glands
160.	The following gas was most I			_
	(a) Ammonia	(b) Oxygen	(c) Hydrogen	(d) Methane

161.	Coloured rock paintings were presu (a) Cro-magnon man (b) Ne	=		y Java ape m	an (d) Peking man
162.	The factors involved in the formatio			-	(,)
	(a) isolation and gene flow			ow and cor	npetition
	(c) competition& mutation			on and varia	
163.	At a particular locus, frequency of a	lele A is	0.6 and th	at of allele	a' is 0.4. What would be the frequency
	of heterozygotes in a random matin	g popul	ation at eq	uilibrium?	
	(a) 0.36 (b) 0.16		(c) 0.24		(d) 0.48
164.	Migratory fishes are				
	(a)Stenohaline (b) Eurytherm	al	(c)Euryhal	ine	(d) Homeothermic
165.	Age pyramid of a stable population				
	(a) Urn shaped (b) triangular		(c) Bell sha	aped(d) Inv	erted
166.	Competitive Exclusion principle was	given b	У		
	(a) Allen (b) Pearl-verh		(c)Gause		(d) N.Borlaug
167.	Gross primary productivity minus re	spiratio		-	em is
	(a) Primary productivity		(b) net pro	•	
	(c) net primary productivity		` '	lary produc	•
168.	According to David Tilman, greater				mary productivity. Which of the
following has least diversity but high primary productivity?					
	(a) Desert ecosystem			al rainforest	
	(c) Composite fish culture pond			nt ecosyste	m
169.	Which of the following have the hig	nest no		n nature?	40.5
	(a) Fungi (b) Insects		(c) Birds	.	(d) Angiosperms
170.		ose in C	.olumn II &	Choose the	Correct option from the codes given
	below:		Caliman II		
	Column I	:\ Llocr	Column II		
	(a)catalytic converter		oital waste		
	(b)muffler (c) Incinerator	ii) SO ₂ iii) Noi			
	(d) scrubber	iv) CO	30		
	(1) a - (iii) b- (iv) c - (i) d - (ii)	-	(2) a - (iv)	b- (iii) c-	(ii) d - (i)
	(3) a - (iv) b- (i) c - (iii) d - (ii)			b- (iii) c -	
171.	Major air pollutant is		(1) 4 (10)	S (III) C	(1) (1)
	(a) CO ₂ (b) N ₂		(c) CO		(d) S
172.	Which of the following does not pas	s throug	• •	tic duct?	(4) 5
	(a) Enzymes (b) Alkaline bi		(c) Insulin		(d) Bilirubin
173.	A doctor suggested a person to take		` '	might be su	• •
	(a)Diarrhoea (b) Jaundice		(c)Constip	_	(d) Indigestion
174.	RV +VC =		() 1		()
	(a) EC (b) TLC		(c) IC		(d) RV
175.	On an average healthy human breat		` '	per hour	•
	(a) 12-16 (b) 720-960		(c) 4-5		(d) 120-160
176.	Which of the following harmones pl	ay a sigi	` '	e in osteopo	` ,
	(a) Aldosterone & prolactin	_		=	Aldosterone

	(c) Parathyroid hormone & prolactin (d) Estrogen and parathyroid hormone 7. A 10 year child with deficient anterior pituitary function is likely to					
177.		· · · · · · · · · · · · · · · · · · ·	ary fun			
	(a) develop acromegaly			· ·	but have relatively normal body	
	(c) be a constant dange	• •				
178.	Which part of human e		_		-	
	(a) vestibular apparatus	• •		• •		
179.	A resting axonal memb	rane is comparatively	y more	permeable to	_ and nearly	
	impermeable to	// \ / / / · · · · · · · · · · · · · · ·		() 0	(1) (1)	
	(a) Na ⁺ ions & K ⁺ ions					
180.		I temperature change	es the b	ody temp of humans	remains at 37° C. This is possible	
	due to			() 6 !	(1) 5:	
		b) Hypothalamus		(c) Cerebrum	(d) Diencephala	
181.	The bone with glenoid			/	(1) 5 1:	
	` '	b) Ilium		(c) Scapula	(d) Pubis	
182.	Identify the correct Ma			5 1		
	Muscle Contrac			Relaxation		
	(a) Troponin tropomysin complex			Troponin tropomyosin complex masks the active site		
	Moves away from th		_			
	(b) Z-membranes moves away from m-line				s m-line	
	(c) Recovery stroke occ			stroke occurs		
400	(d) Calcium ions reente		Calciur	n ions move into sarco	oplasm from Cisternae	
183.	Knee joint & elbow join	•		/-\ -! -1 !-!-1	(4) 1	
		b) ball& socket joint		(c) pivot joint	(d) hinge joint	
184.	Angiotensin II is	I-V	(-)1	are and an art and the	- (d) decreasing CFD	
40=	(a)a vasoconstrictor (-	(c) acti	vating adrenai meduli	a (d) decreasing GFR	
185.	Increase in body fluid v			(la) a	a of ADII	
	(a)activates the osmore		(b) suppresses release of ADH			
	(c)increases ADH secret	lion		(d) prevents diuresis		
			SEC	CTION B		
186.	The Structures involved	l in storage excretion	are			
	(a) malpighian tubules	(b) corporaadi	posa	(c) corporacardiaca	(d) uricose glands	
187.	Lactic acid is excreted b	ру				
	(a)sebaceous glands (b) sudoriferous gland	ds	(c) liver	(d) kidneys	
188.	Which of the following	is not represented in	norma	l human ECG?		
	(a) Depolarisation of at	ria		(b) Depolarisation of	ventricles	
	(c) Repolarisation of at	ria		(d) Repolarisation of	Ventricles	
189.	In mammals which bloc	od vessel would norm	nally car	rry largest amount of t	urea?	
	(a) Renal vein (b) Dorsal Aorta		(c) Hepatic Vein	(d) Hepatic portal vein	
190.	In MOET (multiple ovul	ation Embryo techno	logy), t	he fertilized eggs from	n a cow collected in this stages	
	(a) 6 to 7 cells (b) 8 to 32 cells		(c) 2 to 4 cells	(d) 36 to 40 cells	
191.	The aquaculture involve	es the production of	useful			
	(a) aquatic plants (b) Shrimps and praw	ns	(c) Fishes & oysters	(d) All of these	

192. Which of the following is true pair of biolef thizers:						
	(a) Azolla& BGA	(b) Nostoc& legume	(c) Rhizobium	& grasses	(d) Salmonella &E.col	
193.	Antivenom against sn	ake poison contains				
	(a) Antigens	(b) Antigen-antibody	complexes	(c) antibodies	(d) Catechin	
194.	Which of the followin	g is not useful in reduc	ing the sympto	oms of allergy?		
	(a) Steroids	(b) Antihistamines	(c) Adr	enalin	(d) Histamines	
195.	α-Interferons are use	d in cancer treatment t	to			
	(a) Activate the immu	ne system	(b) Sup	press the imm	une system	
	(c) Activate the nervo	us system	(d) Sup	press the endo	ocrine system	
196.	Four pairs of gills which	ch are covered by oper	culum on each	side in which	of the following?	
	(a) Myxine	(b) Betta	(c) Pris	tis	(d) Trygon	
197.	Vesicles filled with ne	urotransmitters are pr	esent in			
	(a) Dendrites	(b) Cyton	(c) Syn	aptic Knobs	(d) Axonhillock	
198.	Depletion of which ga	is in the atmosphere ca	an lead to an in	icrease inciden	ce of skin cancers	
	(a)Nitrous oxide	(b) Ozone	(c)Amr	monia	(d) Methane	
199.	Infected females may	often be asymptomati	ic during the in	fection of		
	(a)Hepatitis – A	(b) SCID	(c) STD)	(d)Cholera	
200.	Which of the followin	g options, best represe	ents enzymes c	omposition of	succus entericus?	
	(a)Sucrase, nuclease,	steapsin	(b) Lac	(b) Lactase, pepsin, procarboxypeptidase		
	(c) maltase, aminoper	otidase, lipase	(d) Am	ylase, lipase, P	epsinogen	