

MARKS: 720 FULL TEST 5 TIME: 3 Hrs

FULL TEST 5 PART A – PHYSICS SECTION A

1. When a ceiling fan is switched on, it makes 10 rotations in the first 3 seconds. How many rotations

	will it make in the next 3 seconds? (Assume uniform angular acceleration)				
	a) 10 b) 20 c) 30 d) 40				
2.	In a young's double – slit experiment, the central bright fringe can be identified				
	a) As it has greater intensity than the other bright fringes				
	b) As it is wider than the other bright fringes				
	c) As it is narrower than the other bright fringes				
	d) By using white light instead of monochromatic light				
3.	The shape of graph plotted between velocity and position of a particle executing simple				
	harmonic motion is				
	a) an ellipse b) a parabola c) a hyperbola d) a straight line				
4.	The maximum and minimum tension in the string whirling in a circle of radius 2.5 m with constant				
	velocity are in the ratio 5 : 3 then its velocity is				
	a) $\sqrt{98} \text{ ms}^{-1}$ b) 7 ms ⁻¹ c) $\sqrt{490} \text{ ms}^{-1}$ d) $\sqrt{4.9} \text{ ms}^{-1}$				
5.	A bar magnet is demagnetized by inserting it inside a solenoid of length 0.2 m, 100 turns, and carrying				
	a current of 5.2 A. The coercivity of the bar magnet is :				
	a) 1200 A/m b) 2600 A/m c) 520 A/m d) 285 A/m				
6.	A passenger train is running on a railways track with a speed v ₁ . While driving, the driverdiscovers				
	that another goods train is travelling in front of the passenger train with a speed $v_2(v_1 > v_2)$. Its				
	retardation after applying brakes is a. The least distance the passenger train must travel to avoid				
	collision with goods train is				
	a) $\frac{v_1^2 - v_2^2}{2a}$ b) $\frac{V_2 - V_1}{a}$ c) $\frac{V_2 + V_1}{2a}$				
7.	A man is standing at a spring platform. Reading of spring balance is 60 kgwt. If man jumpsoutside				
	platform, then reading of spring balance				
	a) First increases then decreases to zero b) Decreases				
	c) Increases d) Remains same				
8.	For a particle showing motion under the force $F = -4(X-3)^2$, the motion is				
	a) Oscillatory b) simple harmonic motion c) translatory d) both (1) and (2)				
9.	A 2 kg mass is rotating on a circular path of radius 0.8 m with angular velocity of 44 rad/sec. I				
	radius of path becomes 1 m. Then the value of angular velocity will be				
	a) 28.16 rad/sec b) 35.16 rad/sec c) 19.28 rad/sec d) 8.12 rad/sec				
10.	. A body of mass 3 kg is moving with a velocity of 4 ms $^{-1}$ towards right, collides head on with a body				
	of mass 4 kg moving in opposite direction with a velocity of 3ms ⁻¹ . After collision the two bodies				
	stick together and move with a common velocity, which is				
	a) Zero b) 12 ms ⁻¹ towards left c) 12ms ⁻¹ towards right d) $\frac{12}{7}$ ms ⁻¹ towards left				
11.	. Two bodies of masses m_1 and m_2 are initially at rest at infinite distance apart. They are ther				

allowed to move towards each other under mutual gravitational attraction. Their relative velocity

of approach at a separation distance r between them is

a)
$$[2G \frac{(m_1-m_2)}{r}]^{1/2}$$

b)
$$\left[\frac{2G}{\pi} (m_1+m_2)\right]^{1/2}$$

b)
$$\left[\frac{2G}{r}(m_1+m_2)\right]^{1/2}$$
 c) $\left[\frac{r}{2G(m_1m_2)}\right]^{1/2}$ d) $\left[\frac{2G}{r}(m_1m_2)\right]^{1/2}$

d)
$$\left[\frac{2G}{r} (m_1 m_2)\right]^{1/2}$$

- 12. Wires A and B are made from the same material. A has twice the diameter and threetimes the length of B. If the elastic limits are not reached, When each is stretched by the same tension, the ratio of energy stored in A to that in B is
- b) 3:4
- c) 3:2
- 13. In a streamline flow if the gravitational head is h. The kinetic and pressure heads are
 - a) v^2/g and p/ρ
- b) $v^2/2g$ and $p/\rho g$
- c) $v^2/2g$ and p/ρ
- d) $v^2/2$ and $p/\rho g$
- 14. A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2x10⁻⁶ / °C, the period of the pendulum will have percentage increase of
 - a) 2x10⁻⁵
- b) 10⁻⁵
- c) 2x10⁻³
- d) 10⁻³
- 15. The temperature, at which Centigrade and Fahrenheit scales give the same reading is
- b) 40°
- c) -30°
- **16.** Carbone monoxide is carried around a closed cycle *abc* in which *bc* is an isothermal process as shown in the figure. The gas absorbs 7000 Jof heat as its temperature increases from 300 K to 1000 K in going from a to b. The quantity of heat rejected by the gas during the process ca is

- b) 5000 J

- **17.** The dimensions of $\frac{1}{2}\varepsilon_0 E^2$ (ε_0 = permittivity of free space ; E = electric field) is
- b) MLT⁻¹
- d) ML^2T^{-1}
- 18. The tyre of a motor car contains air at 15° C. If the temperature increases to 35° C, the approximate percentage increase in pressure (ignore to expansion of tyre)
 - a) 7

b) 9

- c) 11
- d) 13
- 19. Two blocks each of mass m are connected to a spring of spring constant k. If both are given velocity v in opposite directions, then the maximum elongation of the spring is

- a) $\sqrt{\frac{mv^2}{k}}$ b) $\sqrt{\frac{2mv^2}{k}}$ c) $\sqrt{\frac{mv^2}{2k}}$ d) $\sqrt[2]{\frac{mv^2}{k}}$
- 20. A particle is executing simple harmonic motion with time period T. Starting from mean position, time taken by it to complete 5/8 oscillations is
 - a) 7T/12
- b) 5T/12
- c) T/12
- **21.** The transverse displacement of a string fixed at both ends is given by $y = 0.06 \sin(\frac{2\pi x}{3})\cos(120\pi t)y$ and x are in metres and t in seconds. The wavelength and frequency of the two superposing waves are
 - a) 2m, 120 Hz
- b) $\frac{2}{3}m$,60 Hz c) $\frac{3}{2}m$,120 Hz d) 3m, 60 Hz

		CALL TO MODELLO		
22. If 10^{10} electrons are acquired by a body every second, the time required for the body to get a total charge of 1 C will be				
a) Two hours	b) Two days	c) Two years	d) 20 years	
23. Three identical cap	acitors are combine	ed differently. For the	e same voltage to each combina	tion,
•	the greatestenergy	•	<u> </u>	·
	· ·	s with it b) Three in	n series	
c) Three in parallel		•	series and third in parallel with it	t
•	of a point charge o	•	rges is carried from point A to B	
	gure. The work done	·	. В се те те те те те те те те	, -, -
and 2 as shown in in	Bare. The Work don't	. 13		
E Q				
c	a) Least along the	path AF	b) Least along the path AC	
		one of the paths		
25. Three resistors each		•	ingular shape. The resistance bety	ween
any two vertices wil		oted together in a tria	garar shaper the resistance sect	
a) 4/3 ohm		c) 3 ohm	d) 6 ohm	
•	, ,	•	a series resistance 2R, the range	is 0 –
	tion between V and I		a series resistance 2n, the range	13 0
a) $V' = 2V$			d) $V' < 2V$	
•	•	•	series gives the same current v	when
			internal resistance of each cell.	VIICII
a) 1 Ω	b) 0.5 Ω	c) Zero	d) 1.5 Ω	
•	•	•	form a circular plane coil of one	turn
=			pops of smaller radius. The mag	
_	caused by the same of	. , .	ops of smaller radius. The mag	iictic
a) One-third of its f	•	b) Unalter	end	
c) Three times of its		•	nes of its initial value	
•		,	20 W/m², then the sound intensi	ity at
	the same source w		to with , then the sound intensi	ty at
			n ² d) 2.5 W/m ²	
a)5 W/m ²	•	•	•	مبياه
_	epublicy of a para	imagnetic substance	at -73° C is 0.0060, then its v	raiue
at-173°C will be	b) 0.0120	-) 0 0100	4) 0 0045	
a) 0.0030	b) 0.0120	c) 0.0180	d) 0.0045	
_			A and total resistance R, rotates	with
	_		mf generated in the coil is	
a) NABR ω	b) <i>NAB</i>	c) <i>NABR</i>	d) NAB ω	
	_		ock box" through a pair of termi	
-	ossible R, L, C or th	ieir combination, wh	ose elements and arrangements	s are
not known to us.				

 $e = 75 \sin(\sin \omega t) \text{ volt}$

 $i = 1.5 \sin(\omega t + 45^{\circ}) amp.$

Τŀ	ne	wr	ong	sta	tei	ne	nt	is
----	----	----	-----	-----	-----	----	----	----

a) There must be a capacitor in the box

b) There must be an inductor in the box

c) There must be a resistance in the box

d) The power factor is 0.707

33. The frequency of ac mains in India is

a) 30 c/s or Hz

b) 50 *c/s* or *Hz*

c) 60 *c/s* or *Hz*

d) 120 c/s or Hz

34. A radiation of 200 W is incident on a surface which is 60% reflecting and 40% absorbing. The total force on the surface is

a) $1.07 \times 10^{-6} \, \text{N}$

b) 1.3×10^{-6} N

c) 1.07×10^{-7} N

d) 1.03×10^{-7} N

35. Which of the following logic gate is an Universal Gate?

a) OR

b) AND

c) NAND

d) NOT

SECTION B

36. If μ_i represents refractive index when a light ray goes from medium i to medium j, then the product $_{2}\mu_{1} \times_{3} \mu_{2} \times_{4} \mu_{3}$ is equal to

a) $_{3}\mu_{1}$

b) ₃μ₂

c) $1/_{1}\mu_{4}$

37. The equation of standing wave in a stretched string is given by $y = 5 \sin(\frac{\pi X}{3}) \cos(40\pi t)$. Where x and y are in cm and t in second. The separation between two consecutive nodes is

a) 4 cm

b) 1.5 cm

c) 6 cm

38. The average velocity of a body moving with uniform acceleration travelling a distance of 3.06 m is 0.34 ms⁻¹. If the change in velocity of the body is 0.18 ms⁻¹ during this time, its uniform acceleration is (in ms⁻²)

a) 0.01

b) 0.02

c) 0.03

d) 0.04

39. The ratio of the energy of a photon with λ = 150 nm to that with λ = 300 nm is

a)2

b) 1/4

d) 1/2

40. When an electron jumps from the orbit n = 2 to n = 4, then wavelength of the radiations absorbed will be (R is Rydberg's constant)

a) 3R/16

b) 5R/16

c) 16/5R

d) 16/3R

41. A tuning fork of unknown frequency produces 4 beats per second. When sounded with another tuning fork of frequency 254 Hz. It gives the same number of beats per second when unknown tuning fork loaded with wax. The unknown frequency before loading with wax is

a) 254 Hz

b) 258 Hz

c) 250 Hz

42. Which is the correct expression for half-life

a) $(t)_{1/2} = log_{10} 2$ b) $(t)_{1/2} = \frac{\lambda}{log_{10} 2}$ c) $(t)_{1/2} = \frac{\lambda}{log_{10} 2} (2.303)$ d) $(t)_{1/2} = \frac{2.303 log_{10} 2}{\lambda}$

43. A particle is moving in the x - y plane with a constant velocity along a line parallel to the x- axis, away from the origin. The magnitude of its angular momentum about the origin

b) remains constant c) goes on increasing

d) goes on decreasing

44. Two pieces of glass plate one upon the other with a little water in between them cannot be

separated easily because of

- a) Inertia
- b) pressure
- c) surface tension
- d) viscosity
- **45.** At a place, if the earth's horizontal and vertical components of magnetic fields are equal, then the angle of dip will be
 - a) 90°
- c) 30°

- $d) 0^{0}$
- **46.** A body is tied with a string and is given a circular motion with velocity v in radius r. The magnitude of the acceleration
 - a) $\frac{u}{r}$

b) $\frac{v^2}{r}$

- c) $\frac{v}{r^2}$
- **47.** Power of water pump is 2 KW. If $g = 10 \text{ m/sec}^2$, the amount of water it can raise in one minute to a height of 10 m is
 - a) 2000 litre
- b) 1000 litre
- c) 100 litre
- d) 1200 litre
- **48.** From a circular ring of mass M and R, an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the ring and perpendicular to the plane of ring is k times MR². Then the value of k is
 - a) 3/4

b)7/8

- d) 1
- 49. If the volume of a block of aluminium is decreased by 1%, the pressure (stress) on its surface is increased by (Bulk modulus of A1 = $7.5 \times 10^{10} \text{ Nm}^{-2}$)
 - a) $7.5 \times 10^{10} \text{ Nm}^{-2}$
- b) $7.5 \times 10^8 \text{ Nm}^{-2}$
- c) $7.5 \times 10^6 \text{ Nm}^{-2}$
- d) $7.5 \times 10^4 \text{ Nm}^{-2}$
- **50.** A particle executes simple harmonic motion with a time period of 16s. At time t = 2s, the particle crosses the mean position while at t = 4s, velocity is 4 ms⁻¹. The amplitude of motion in metre is
 - a) $\sqrt{2}\pi$

b) $16\sqrt{2}\pi$

- c) $24\sqrt{2}\pi$
- d) $\frac{32\sqrt{2}}{\pi}$

PART B – CHEMISTRY **SECTION A**

51. The products obtained when anisole is heated in a sealed tube with HI are

d)CH₃OH + CH₃I

52.

a)

-CH₂OH

53. The correct order of ease of dehydration of following is

a) I > II > III

- b) III > II > I
- c) I > III > II
- d) ||| > | > ||

 $CH_3OH \xrightarrow{Cu} A \xrightarrow{NaOH} B \text{ is } :$

c)

54. The end product of the reaction,

- a) Alkane
- b) Carboxylic acid
- c) Sodium salt of carboxylic acid
- d) Ketone

- 55. The correct order of decreasing acidity of nitrophenols will be
 - a) m-nitrophenol > p-nitrophenol > o-nitrophenol b) o-nitrophenol > m-nitrophenol > p-nitrophenol
 - c) p-nitrophenol > m-nitrophenol > o-nitrophenol > o-nitrophenol > o-nitrophenol > o-nitrophenol
- 56. The major product during hydroboration-oxidation of 1-methylcyclopentene is

57.

- **58.** What is the product in the reaction $CH_3MgBr \xrightarrow[(ii)H_2O]{}^{(ii)CO_2}$
 - a) Acetaldehyde
- b) Acetic acid
- c) Formic acid
- d) Formaldehyde

59. Ph – C \equiv C – CH₃ + $H2O \xrightarrow{Hg^{2+}/H^{+}} A$, A is

- **60.** Increasing order of basicity of $CH_3CH_2CH_2NH_2$ $H_2C = CHCH_2NH_2$ and $HC \equiv CCH_2NH_2$ is
 - a) $CH_3CH_2CH_2NH_2 < HC \equiv CCH_2NH_2 < H_2C = CHCH_2NH_2$
 - b) $CH_3CH_2CH_2NH_2 < H_2C = CHCH_2NH_2 < CH \equiv CCH_2NH_2$
 - c) $HC \equiv CCH_2NH_2 < H_2C = CHCH_2NH_2 < CH_3CH_2CH_2NH_2$
 - d) $CH \equiv CCH_2NH_2 < CH_3CH_2CH_2NH_2 < H_2C = CHCH_2NH_2$
- 61. Identify "X" in the series,

NHCOCH₃

- 62. The decreasing order of basic characters of the three amines and ammonia is
 - a) $NH_3 > CH_3NH_2 > C_2H_5NH_2 > C_6H_5NH_2$
- b) $C_2H_5NH_2 > CH_3NH_2 > NH_3 > C_6H_5NH_2$
- c) $C_6H_5NH_2 > C_2H_5NH_2 > CH_3NH_2 > NH_3$
- d) $CH_3NH_2 > C_2H_5NH_2 > C_6H_5NH_2 > NH_3$
- 63. The major product of the following reaction is

64. Arrange the following compounds in decreasing order of basic strength

- a) IV>I>III>II
- b) III>IV>II
- c) ||>|>|||>|V
- d) |>|||>||

- 65. Consider the following reagents
 - II. Tollen's reagent I. Br₂ water

III. Fehling's solution

Which can be used to make distinction between an aldose and a ketose?

- a) I, II and III
- b) II and III
- c) I only
- d) II only

- 66. Dacron is an example of
 - a) Polyester
- b) Polyurethane
- c) Polyamide
- d) Polypropylene

- **67.** Bithional is an example of
 - a) Disinfectant
- b) Antiseptic
- c) Antibiotic
- d) Analgesic
- 68. The structure of the major product formed in the following reaction is

- 69. If the density of water is 1 g cm^{-3} then the volume occupied by one molecule of water is approximately c) 6.02×10^{-23} cm³ a) 18 cm³ b) 22400 cm³ d) $3.0 \times 10^{-23} \text{cm}^3$
- 70. Which one of the following set of quantum numbers is not possible for electron in the ground state of an atom with atomic number 19?
 - a) n = 2, l = 0, m = 0
- b) n = 2, l = 1, m = 0 c) n = 3, l = 1, m = -1 d) n = 3, l = 2, m = +2
- 71. The energy of electron in first orbit of He⁺ is $(R_{\rm H}=-871.6\times10^{-20}~{\rm J})$. The energy of electron in the first orbit of H is:
 - a) -871.6×10^{-20} J

- b) -435.8×10^{-20} [c) -217.9×10^{-20} [d) -108.9×10^{-20} [
- 72. In which of the following arrangements, the sequence is not strictly according to the property written against it?

	a) $\rm CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing oxidising power					
	b) $\mathrm{HF} < \mathrm{HCl} < \mathrm{HBr} < \mathrm{HI}$: increasing acid strength					
	c) $NH_3 > PH_3 < AsH_3 < SbH_3$: increasing basic strength					
	d) $B < C < 0 < N$: increasing first ionisation enthal	alpy				
73.	Geometry of SiO_4^{4-} anion is					
	a) Tetrahedral b) Trigonal	c) Trihedral	d) Pentagonal			
74.	Four diatomic species are listed below. Identify the	correct order in which	n the bond order is increasing in			
	them:					
	a) NO $< O_2^- < C_2^{2-} < He_2^+$	b) $0_2^- < NO < C_2^{2-} <$	< He ₂ ⁺			
	c) $C_2^{2-} < He_2^+ < O_2^- < NO$	d) $He_2^+ < O_2^- < NO <$	$< C_2^{2-}$			
<i>75.</i>	Which one of the following is correct about surface	tension (ST) and visco	osity (η) ?			
	a) Both decrease with temperature	b) Both increases with	n temperature			
	c) ST increases and η decreases with temperature	d) ST decreases and η	increases with temperature			
76.	If, $S + O_2 \rightarrow SO_2$; $\Delta H = -298.2 \text{ kJ}$ (i)		•			
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$; $\Delta H = -98.7 \text{ kJ} \dots (ii)$					
	2					
	$SO_3 + H_2O \rightarrow H_2SO_4$; $\Delta H = -130.2 \text{ kJ } \dots (iii)$					
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \ \Delta H = -227.3 \text{ kJ} \dots (iv)$					
	2					
	The enthalpy of formation of H_2SO_4 at 298 K will be:	c) – 650.3 kJ	J) 422.7 ki			
77	a) -754.4 kJ b) $+320.5 \text{ kJ}$ Hess's law of constant heat summation is an application	,	uj – 455.7 Kj			
,,,	a) Kirchhoff's law	b) First law of thermo	dynamics			
	c) Second law of thermodynamics	d) Entropy	uy			
78.	The solubility of AgCl is 1×10^{-5} mol/L. Its solubility		ium chloride solution is			
		c) 1×10^{-9}				
79.	Phosphorus pentachloride dissociates as follows	, in a closed reaction v	vessel,			
P	$Cl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ If total pressure at equ	ilibrium of the reaction	on mixture is p and			
	degree of dissociation of PCl_5 is x , the partial pre-					
	a) $\left(\frac{x}{x+1}\right)p$ b) $\left(\frac{2x}{1-x}\right)p$	c) $\left(\frac{x}{x}\right) p$	d) $\left(\frac{x}{x}\right) p$			
80	$(x+1)^{-1}$ 100 mL of 0.015 M HCl solution is mixed with 100	(2, 1)	(1 %)			
00.	resultant solution?	1112 01 0.003 W 1101. W	natis the pri or the			
	a) 2.5 b) 1.5	c) 2	d) 1			
81.	A solution of $KMnO_4$ is reduced to MnO_2 . The norm	•	•			
01.	a) 1.8 <i>M</i> b) 0.6 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>			
82.	In which of the following reactions, H_2O_2 is acting a	•	·, · · · · ·			
J	a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$	b) $2KI + H_2O_2 \rightarrow 2KO$	OH + I ₂			
	c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$	d) $AgO_2 + H_2O_2 \rightarrow 2$	_			
83.	Bleaching powder is obtained by the interaction of		118 1 112 0 1 0 2			
00.		Dry slaked lime				
	• •	dilute solution of Ca	$(OH)_2$			
84.	Na_2CO_3 can be manufactured by Solvay process but		· · · =			
	a) K ₂ CO ₃ is more soluble	b) K ₂ CO ₃ is less solub				
	c) KHCO ₃ is more soluble than NaHCO ₃	d) KHCO $_3$ is less solution				
85.	The hybridization of boron atom in orthoboric acid	· ·	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
J.	a) sp b) sp^2	c) sp^3	d) sp^3d			
	-,	-, - _F	-, -r			

SECTION B

86. W	Which of the following	is a three dimensiona	al silicate?			
a) Mica	b) Spodumene	c) Ze	olite	d) None of the	se
87. W	Which of the following	reactions proceeds \emph{v}	ia secondary	free radical?		
	$CH_3 - CH = CH_2 \xrightarrow{HBr}$	CH ₃ – CH – CH ₃				
	2				UDr	
a)	Br	b) CH ₃	$-CH = CH_2 -$	$\xrightarrow{\text{HBr}} \text{CH}_3 - \text{Cl}$	$H_2 - CH_2Br$
,	$C_6H_6 \xrightarrow{Br_2/FeBr_3} C_6H_5$	D	W G 11	Br ₂	ov light	
C)	$C_6H_6 \longrightarrow C_6H_5$	Br	$d)C_6H_6$	$\xrightarrow{\text{Br}_2} \text{CH}_3$	₃ – CH ₂ Br	
88. N	laximum enol conten	t is in		_		
	0	0 0		o II	o II	0
				\downarrow		
a) / \	b) / \		c) / H	d) /	Н
89. N	$Ia_2S + Na_2[Fe(CN)_5N]$	$IO] \rightarrow Purple colour. I$	t is due to			
a) Na ₄ [Fe(CN) ₃ NOS]	b) Na ₃ [Fe(CN)	₅ NOS]	c) Na ₄ [Fe(C	$N)_5NO]$ d) $Na_4[$	Fe(CN) ₅ NOS]
90. T	he product obtained a	at anode when 50% H	₂ SO ₄ aqueo	us solution is el	ectrolysed using	platinum
	lectrodes is					
	H_2SO_3			c) O ₂		
	(i / Ni ²⁺ [1.0 M] Au	,	$e E^{\circ}$ for Ni ²⁴	/Ni is -0.25	$50~\mathrm{V}$; and $E\degree$ for A	Au ³⁺ / Au is
0	.150 V. The emf of the					
	a) +1.25 V	•	•	.75 V	•	1.600.1
	0.15 g of a solute, dis					
	nat of the pure solven	t. The molecular weig	gnt of the su	ostance (molai	elevation constai	nt for the
	olvent is 2.16° C) is	N 10 1	a) 10	d\ 1 (201	
) 100 or zero order reaction	•	c) 10	d) 1.0	001	
	F - 3			[4] [4]], [4]	
a	$) kt = \frac{[A]}{[A]_0} $ k	$(A) Kt = [A] - [A]_0$	c) $[A] = -\kappa$	$t + [A]_0$ d) $[A$	$J = kt - [A]_0$	
	first order reaction is		min. What is			n?
		•	c) 0.322	d) 0.0	0322	
	Which of the following		dsorption?			
) $\Delta G < 0$; $\Delta S > 0$; ΔH				$\Delta S < 0; \Delta H < 0$	
	$\Delta G > 0; \Delta S > 0; \Delta H$			•	$\Delta S < 0; \Delta H > 0$	-1' (
	n the extraction of cop	per from its suipnide	ore, the me	tal is finally obt	ained by the redi	iction of
	uprous oxide with:	a) Carban manayida (CO() of $Conv$	oor/I) culphido	(Cu C) d\ Sulahı	ur diovido (CO.)
) Iron sulphide (FeS) k	•		· · · · ·		, -,
	UNION OF THE TOURING	nronerties does not a	orrespond to	n the order? H	I < HBr < HCl	< HF

PART C – BOTANY SECTION A

c) $Mg_3N_2 + H_2O$

c) 2 and 4

c) Groups 4, 5 and 6

98. On heating $(NH_4)_2Cr_2O_7$, the gas evolved is 'X'. The same gas is obtained by heating:

b) Groups 5, 6 and 7

100. The number of unpaired electrons calculated in $[Co(NH_3)_6]^{3+}$ and $[Co(F_6)]^{3-}$ are

b) NH₄NO₃

b) 0 and 2

99. 'Hydride gap' is referred to which region of the Periodic Table?

a) NH_4NO_2

a) 4 and 4

a) Groups 3, 4 and 5

d) $Na_2O_2 + H_2O$

d) 0 and 4

d) Groups 7, 8 and 9

101.	· · · · · · · · · · · · · · · · · · ·			2) Both A and R are true but R doesn't explain A		
100	3) A is true but R		1 . 6 . 11	4) A is false but l	R is true	
	In a meiocyte, Inte 1) Prophase I Shape of the bacte	2) Telophase	I	3) Prophase II	4) Metaj	phase I
105.	1)	2) Online	3)	Officiation experime	4) 8	3
		90		<u></u>	-0	
104.	Exogenously prod	luced sexual spore	s are found in			
	1) Alternaria	2) <i>Alb</i>	ugo	3) Agaricus	4) Asper	gillus
105.	Study the following	ng lists and identif	•	atch		
	List I		List II			
	A. Edible oil		I. Crotalaria			
	B. Ornamental		II. Capsicum			
	C. Fodder		III. Petunia			
	D. Spice		IV. Arachis			
			V. Dalbergia			
	$ \begin{array}{ccc} \underline{A} & \underline{B} \\ 1) & V & III \end{array} $	<u>C</u> <u>D</u> I II				
	′					
	2) IV III					
	3) IV III					
107	4) IV III	I II	. 1	·	C 1	1 1 ' /
106.	ATP equivalents p	produced during of 2) 1	xidation of Suco	cinate to Fumerate 3) 4	_	ose molecule is/are 4) 3
107	Selaginella and Sa	,	cionificant stan	,		/
107.	~	phyte is free & ge	-		or seed maon	occause
	2) Male gametoph		-	2 secus		
	3) Megaspores por	•		rounded by seed co	nat	
	4) Embryo develo					nyte.
108.	The size (diameter			-	parent sporopi	1,10
100.				3) 25-50 microm	eters 4	1) 25-30 meters
109.	Study the following			3) 2 5 50 mierom	CtCIS	., 25 50 meters
107.		+solute				
	Water	Solution	ion			
	Α	B C				
	Identify the true st		rence to ψ valu			
	1) A greater than l			2) B greater than		
440	3) C less than B b	-		4) A greater than	C but equal to	о В
110.	NAD ⁺ in Krebs cy	cle functions as		2) 1		
	1) Oxygen donor			2) Acceptor of hy		
111	3) Oxygen accepto		11 4 1 1	4) Donor of hydr	-	electrons
111.	Assertion: Vascul					
	Reason: Bicollate		-	•	layers of xyl	em
		are true and R is th	-			
	2) Both A and R a		i ine correct ex	-	D : a 4:	
112	3) A is true but R		notymas A-DD	4) A is false but l		tainad in the
112.	From a cross AAF following ratio	ou a aabb, the ge	notypes AaBB	: Aabo : Aabo : aa	add will be ob	tained in the

	1) 1 : 1 : 1 : 1	2) 1 : 2 : 1 : 0	3) 0 : 3 : 1 : 0	4) 1:1:1:0
113.	In which form Phosphorous			
	1) $H_3PO_4^{-1}$	2) HPO ₄ -1	3) $H_2PO_4^{-1}$	4) $H_4P_2O_7^{-1}$
114.	Duplication of centriole in an	nimal cells occurs duri		
	1) G ₁ phase	2) S phase	3) G ₂ phase	(4) G _o phase
115.	Plant tissue culture is primar	•		
	1) Apoptosis	2) Totipotency	3) Inoculation and incubation	n 4) Meiosis
116.	Identify the <i>incorrect</i> statem			
	1) A false septum is found in		2) Variation in stamen length	
	3) Hypogynous flower is fou		4) Pentamerous flowers are f	
117.		moval of groups from	substrates in the absence of wa	ater belongs to the
	following classes	2) Class 2	2) (1 4	4) Class 5
110	1) Class 6	2) Class 2	3) Class 4	4) Class 5
110.	During DNA replication, Ok	_	ed to elongate: 2) The leading strand away f	man manliantion foul
	, 66 6	-	k 4) The leading strand towar	-
110			rding to the given pathway. A	
117.			tive steps. A researcher identif	
	•		r or s proteins. Which of the f	
	be the genotypes of those mu		Tors proteins. Which of the	ionowing pair coara
	or the generypes of those in		r	
		р <u>А</u>	В	
		p ———	q	
			C 3 s	
	1) AABbCC & AaBbCC 2) Aabbcc & aaBBCC	3) AABbCc & AaBbCc 4)	AaBbCC & aabbcc
120.			osition found in human body,	
	following elements in increa		,	<u>6</u>
	•	•	licon E. Magnesium F.	Calcium
	1) DECFBA	2) AFDEBA	3) ABDECF	4) FEDCBA
121.			rogeny upon selfing. The prog	eny contains both
	tall and dwarf plants. How m	nany of the 160 progen	y are double homozygous?	
	1) 0%	2) 25%	3) 50%	4) 75%
122.	The number of Basmati varie	_		
	1) 127	2) 227	3) 37	4) 27
123.	Assertion: Gene gun method			
		are bombarded with h	igh-velocity microparticles of	Gold or Tin coated
	with DNA	I.D. :- 41		
	1) Both A and R are true and	-		
	2) Both A and R are true but 3) A is true but R is false	K is not the correct ex	4) A is false but R is true	
124	Adiantum belongs to class		4) A is raise but K is true	
L <i>4</i> 7,	1) Pteropsida	2) Psilopsida	3) Sphenopsida	4) Lycopsida
125	· •	· ·	ites for Eco RI, two restriction	
120.			ents are produced from the do	
	Eco RI and Hin DIII?	Diff. 110 w many magni	ents are produced from the do	dole digestion of
	1) Eight	2) Nine	3) Ten	4) Seven
126.	Bark does not include	<i>,</i>	, -	, · · ·
-	1) Secondary phloem	2) Secondary cortex	3) Secondary xylem	4) Cork
	, , ,	•		,
127.	Last cell of the Sporophytic	generation is		
	1) Meiocyte	2) Meiospore	3) Gamete	4) Pollen grain

128.	A plant hormone and an ex			are are
	1) ABA, low CO_2	, ,	3) Low CO ₂ PMA	4) ABA, high CO ₂
129.	Which of the following cell			face?
		2) Mitochondria		4) Peroxisome
130.	More number of common c	haracters are observed i	in members of a	
	1) Family	2) Species	3) Genus	4) Kingdom
131.	A tissue that does not produ	ace any phytohormones		
	1) Senescing leaf		2) Hypodermis of	monocot stem
	3) Hypodermis of dicots ste		4) Cotyledons	
132.	What template DNA sequen			
	1) 5'-AGT-3'			,
133.	A Pisum (pea) plant has two			
	will be the total number of		in all 20 flowers of that pla	
	1) 16,000	2) 8,200	3) 64,000	4) 32,000
134.	The pressure created in the	tracheary elements of the	he root that pushes water or	sap upwards into the
	shoot system is known as			
	1) Turgor pressure		- ·	4) Root pressure
135.	The cell membrane in Arch	-		
	1) Chitin 2) Pseudope	ptidoglycan 3) Pro	teins & phospholipids	4) Peptidoglycan
		SECT	ION B	
100				
136.	is a taxonomic an			-
	a given area and also provid			
	1) Flora	2) Key	, 0 1	4) Manual
137.	The R.Q. (Respiratory quot			1) 2 2 7 2
420	1) 1.00	2) 1.32	e) « <u> </u>	4) 3.250
138.	The activity of alpha–amyla	_		=
120	1) Gibberellin	•	3) Cytokinin	4) IAA
139.	Longitudinal binary fission		0) F 1	1) D1 11
1.40	1) Amoeba	2) Paramecium	3) Euglena	4) Plasmodium
	Isogametes are seen in:	(2) =	(0) 11	(4) 51
	1) Cladophora	* *	(3) Humans	(4) Ficus
141.	During glycolysis, water is		2) DED	4) C 2 D
1.40	1) 2-PG	2) 1, 3-BPG	3) PEP	4) G-3-P
142.	Methanogens are	2) Commonhesto	2) Chamasantatuanha	4) Damasitas
1.42	1) Photoautotrophs	2) Saprophyte	3) Chemoautotrophs	4) Parasites
143.	In photosynthesis, photolys 1) Reduction of NADP ⁺		3) Oxidation of NAD ⁺	4) Reduction of NAD ⁺
111	A polyribosome is formed to		<i>*</i>	4) Reduction of NAD
144.	1) A single ribosome attach		wing components	
	2) A single ribosome attach	_		
	3) Several ribosomes attach			
		_		
1/15	4) Several ribosomes attach		raciduae (CCCC) and about	tained a nolumentide of
145.	Nirenberg synthesised an R			amed a porypeptide of
	11 Proline residues. It prov			4) CCCC
114	1) Cytosine The component of nitrogen	2) CC	3) CCC	4) CCCC
140.	The component of nitrogen	_		4) C1
	1) Mg	2) Mo	3) Mn	4) Cl

147.	V. You place two plants into a sealed, air-tight container which is filled initially with normal				
	atmosphere. One plant is Tomato and the other Sorghum. Both plants have adequate water for several weeks. The container is placed in illumination appropriate to support photosynthesis. What happens?				
	1) Both utilize same amount of CO ₂		more CO ₂ than Sorghum		
	3) Sorghum utilizes more CO ₂ than Tomato	4) The question is of			
148	The 'Eyes' of the potato tuber are	4) The question is	out of syllabus		
140.	1) Flower buds 2) Leaf buds	3) Axillary buds	4) Root buds		
1/10	Glycyrrhiza glabra is aplant	3) Axillary buds	4) Root buds		
17/,	1) Medicinal 2) Fiber yielding	3) Timber yielding	4) Pulse plant		
150	GEAC stands for	3) Timber yielding	4) I tilse plant		
150.	1) Genetic Engineering Action Committee	2) Government Entern	rise and Analyzing Commission		
	3) Genetic Engineering Analyzing Commission	· · · · · · · · · · · · · · · · · · ·	• •		
	3) Genetic Engineering rulary Enig Commission	1) Genetic Engineering	g ripprovar committee		
	PART D	– ZOOLOGY			
		CTION A			
151.	Characteristic feature of a sponge is the occurrent	nce of			
	(a) One exit and many mouths (b) Canal system	(c) Choanocytes	(d) All the above		
152.	The common name of Ancylostoma is				
	(a) Pinworm (b) Whipworm	(c) Hookworm	(d) Guineaworm		
153.	What is common between ostrich, penguin and		and the state of t		
	(a) These are running birds (b) These have four toes in their feet				
15/	(c) These are migratory birds Four chambered heart is characteristic of this po	(d) These are flight	less bil us		
154.	(a) Psittacula (b) Hemidactylus	(c) Pteropus	(d) Crocodilus		
155.	Which of the following represents the correct con	· · · -	• •		
155.	Characteristics	Class	recption.		
	(a) Mouth ventral, gills without operculum;		ndrichthyes		
	Skin with placoid scales; persistent notocord		Š		
	(b) Sucking and circular mouth; jaws absent,	Cyclostomata			
	Integument without scales; paired appendage:				
	(c) Body covered with feathers; skin moist and G	landular; Aves	5		
	forelimbs form wings; lungs with air sac	. (1)	1.		
150	(d) Mammary gland; hair on body; pinnae; two p	oairs of limbs Man	ımalia		
156.	Cardiac muscles are a) Striated b) non-striated	c) Voluntary	d) in-voluntary		
	(1) a and c are correct	(2) a and d are corr	· •		
	(3) b and d are correct	(4) a, b and c are co			
157.	Myelin sheath is produced by	(-) -,			
	(a) Schwann cells and oligodendrocytes	(b) astrocytes and s	schwann cells		
	(c) Oligodendrocytes and Osteoclasts	(d) Osteoclasts and	Astrocytes		
158.	The structure that prevents the entry of food into		on in mammals is		
	(a) Palate (b) Larynx	(c) Pharynx	(d) Epiglottis		
159.	The enzyme which hydrolyses triglycerides to fa	= -			
460	(a) Zymase (b) Pepsin	(c) Maltase	(d) Lipase		
160.	Secretin		-kilakaa		
	(a) Stimulates enzyme secretion by pancrease, inhibit(b) Stimulates bicarbonate secretion by pancrease				
	bicarbonate secretion by liver	s, minulis aciu secretion i	iii stoiliacii, stiiliulates		
	(c) Stimulates acid secretion in stomach potentia	ates action of CCK inhibits	s intestinal movement		
	(d) Stimulates gall bladder, inhibits acid secretion in				
161.	Residual air mostly occurs in	,	J. F		
	(a) alveoli (b) bronchus	(c) nostrils	(d) trachea		

	PATH TO	SUCCESS		
162.	Which is true?			
	(a) $\frac{P}{Hg}CO_2$ of deoxygenated blood is 95 mm	(b) PCO ₂ of alveoli air is 40 mm Hg		
	(c) PCO_2 of oxygenated blood is 95 mm Hg	(d) $\frac{P}{Hg}CO_2$ of deoxygenated blood is 40 mm Hg		
163.	Which one represents pulmonary – circulation ? (a) Left auricle(oxygenated blood → lungs Deoxygenated blood → Right auricle			
	(b) Left auricle(deoxygenated blood → lungs (oxygenated blood → Right auricle			
	(c) Left auricle(oxygenated blood → lungs			
	(deoxygenated blood → Left auricle			
	(d) Right auricle(deoxygenated blood → lungs			
164.	(oxygenated blood → Left auricle Identify the correct sequence of events in a cardiac cy	7cle		
204.	(a) diastole, atrial systole, ventricular diastole			
(b) atrial systole, ventricular systole, joint diastole				
	(c) atrial systole, ventricular diastole, ventricular sys			
	(d) ventricular diastole, diastole, ventricular systole,			
165.	Which statement of the following are true for formed	elements?		
	(a) Leucocytes are generally short lived			
	(b) eosinophils are the most abundant agranulocytes			
	(c) Platelets are cell fragments produced from throm(d) Neutrophils & basophils are non-phagocytic cells	bocytes		
166	A large quantity of fluid is filtered everyday by the ne	onbrons in the kidney only about 1% of it excreted		
100.	as urine. The remaining 99% of filtrate	phrons in the Muney only about 170 of it exercica		
	(a) gets collected in the renal pelvis	(b) is lost as sweat		
	(c) is absorbed into the blood	(d) is stored in the urinary bladder		
167.	The principal nitrogenous execretory compounds in	· · ·		
	(a) in the liver but eliminated mostly through kidney	S		
	(b) in kidneys but eliminated mostly through liver			
	(c) in kidneys as well as eliminated by kidneys			
	(d) in liver and also eliminated by the same through	bile		
168.	A fall in glomerular filtration rate(GFR) activates	(h) Partarian situitameta milana		
	(a) Adernal medulla to release adrenaline(c) Juxta glomerular cells to release renin	(b) Posterior pituitary to release vasopressin(d) adrenal cortex to release aldosterone		
169	Glenoid cavity articulales:	(u) aurenar cortex to release aldosterone		
103.	(a) Scapula with acromion	(b) Clavide with scapula;		
	(c) humerus with scapula	(d) Clavicle with acromion		
170.	Osteoporosis is an age-related disease of skeletal sys			
	(a) immune disorder affective neuromuscular junction			
	(b) high concentration of Ca++ and Na+			
	(c) decreased level of estrogen			
	(d) accumulation of uric acid leading to inflammation	of joints		
171.	End of T-wave in ECG represents			
	(a) End of ventricular systole	(b) End of ventricular diastole		
	(c) Beginning of ventricular systole	(d) End of complete cardiac diastole		

(a) End of ventricular systole
(b) End of ventricular diastole
(c) Beginning of ventricular systole
(d) End of complete cardiac diastole
172. Unidirectional transmission of a nerve impulse through nerve fibre is due to the fact that
(a) Nerve fibre is insulated by a myelin sheath
(b) Sodium pump starts operating only at the cyton and then continues into the nerve fibre
(c) Neuro transmitters are released by dendrites and not by axon endings
(d) Neurotransmitters are released by the axon endings and not by dendrites
173. A gymnast is able to balance his body upside down even in the total darkness because of
(a) Vestibular apparatus
(b) Tectorial membrane
(c) Organ of corti
(d) Cochlea

1/4.	Receptor sites for fleurotrains	militiers are present on				
	(a) membranes of synaptic ve	esicles	(b) Pre-synaptic membrane			
	(c) tips of axons		(d) post-synaptic membrane			
175.	Select the correct matched pa					
	(a) Pineal gland	- does not influence n	nenstrual cycle			
	(b) Corpus luteum	 secretes oxytoxin 				
	(c) Interstitial cells	 erythropoietic 				
	(d) Cholecystokinin	- stimulates contracti	on of gall bladder			
176.	Find the incorrect Match					
	(a) Parathoromone	- Ca+ metabolism(act				
	(b) ADH	- Diabetes mellitus(di	sease)			
	(c) Glucagon	- 'α' cells(source)				
	(d) Progesterone	- Corpus Luteum(sou				
177.	Mark List – I(hormones) with	ı list – II(effect) and sel	ect the correct answer	using the codes given below		
	the lists	** . **				
	List –I	List-II				
	(Hormones)	(Effect)	1.			
	A. Melatonin	1. Loosening of pelvic	_			
	B. Relaxin	2. Influences the act				
	C. MSH	Pigment dispersa	•			
	D. STH	-	ease of Glucocorticoid	ls		
		5. Metabolism of pro	oteins and fat			
	(1) A- 2; B-1; C-4; D-3 (2) A	A- 1; B-2; C-3; D-5	(3) A- 1; B-2; C-4; D-3	(4) A-2; B-1; C-3; D-5		
178.	Which of the following hormo	ones is active during pr	=			
	` ,	ogesterone	(c) Testosterone	(d) All of these		
179.	Which of the following are ha	=				
	(a) Spermatids (b) Spermato	_ , ,	imary spermatocytes	(d) Secondary spermatocytes		
	(1) a & b are correct (2) a &		(3) b & d are correct	(4) a,b & c are correct		
180.	The phase of menstrual cycle		=			
		ulatory Phase	(c) Luteal Phase	(d) Menstruation		
181.	Infertility is the relative state	of failure to conceive a	fter how many year/ye	ars of sexual life without		
	contraception?					
	(a) One (b) Ty		(c) Three	(d) Four		
182.	In which of the following ART	=	_			
	(a) ET (b) GI		(c) IVT	(d) IUI		
183.	Biogenesis was proposed by	Francesco Redi and sup	-			
	(a) Thales and Plato		(b) Spallanzani and p			
	(c) Thomson and Helmholtz		(d) Oparin and Halda	ne		
184.	According to Haeckel's bioge					
	(a) development of individua		ryonic characters and a	ncestors		
		(b) ontogeny repeats phylogeny				
	(c) germplasm is immortal	. 11. 20				
405	(d) every organism is produc	= =		1 C		
185.	The similarity of bone structu		=	=		
	(a) Adaptive radiation	(b) Convergent evalu	tion (c) Analogy	(d) Homology		
		SECT	ION B			
1 <i>96</i>	The spread of cancerous cells	to distant situa ia tarm	ad			
100.	-	etachrosis	eu (c) Metagenesis	(d) Metamorphosis		
187	Which one is a correct match		(c) Metagenesis	(a) Metamor phosis		
	(a) Bhang - Analgesic	•	(b) Cocaine - Opia	te narcotics		

(c) Morphine - Hallucinogen

(d) Benzodiazepines - Tranquilizer

188.	Heroin is	
	(a) diacetyl morphine (b) triacetyl morphine	(c) tetracetyl morphine (d) Monoacetyl
	morphine	
189.	Which of the following is not used as a biopesticide	e?
	(a) Nuclear Polyhedrosis virus(NPV)	(b) Xanthomonas campestris
	(c) Bacilius thuringiensis	(d) Trichoderma harzianum
190.	The common nitrogen-fixer in paddy fields is	
	(a) Frankia (b) Rhizobium	(c) Azospirillum (d) Oscillatoria
191	The plants growing in deserts to tolerate water str	
191.		tem modified into leaf-like form (d) stipular spines
102	Which of the following is correct for r-selected spe	
192.	(a) Large number of progeny with small size	(b) Large number of progeny with large size
	, , ,	, , = = = = = =
	(c) Small number of progeny with small size	(d) Small number of progeny with large size
193.	What happens to activated sludge?	111 . 0.00
	(a) It is generally released into natural water bodi	
	(b) It is completely pumped back into aeration tan	
	(c) The major part of sludge is pumped into large t	anks called anaerobic sludge digestors
	(d) It undergoes sequential filtration	
194.	Which one of the following is related to Ex-situ con	
	(a) Wildlife safari parks	(b) Biodiversity hot spots
	(c) Amazon rainforest	(d) Himalayan region
195.	High value of BOD(Bio chemical Oxygen Demand)	
	(a) Water is highly polluted	(b) Water is less polluted
		ater is higher by the microbes (d) Water is pure
196.		the outside that serves as both mouth as well as anus is
	(a) Octopus (b) Asterias	(c) Ascidia (d) Dugesia
197.	The kind of epithelium which forms the walls of al	veoli is
	(a) Compound squamous epithelium	(b) Columnar epithelium Ciliated
	(c) Ciliated Columnar	(d) Simple squamous epithelium
198.	In puberty how many primary follicles are found in	
	(a) 60000 – 80000 (b) 40000 – 80000	(c) 120000 - 160000 (d) 30000 - 60000
199.	Select the correct statement from given below	
	(a) smack is obtained from Erythroxylum	
	(b) morphine is often given to persons who have to	ındergone surgery as a pain killer
	(c) Chewing tobacco lowers bloodpressure and he	artrate
	(d) Cocaine is given to patients after surgery as it s	stimulates recovery
200.	Match list I and List II and select the answer using	the codes given below the lists
	List I List	
	• • • • • • • • • • • • • • • • • • • •	Iyelinated nerve fibre
		onnam equilibrium
	(c) Resting potential 3) H	ypathalamus
	(d) Saltatory 4) D	epolarisation propagation & repolarisation
	Codes:	
	a b c d	
	1. 1 2 3 4	
	2. 4 3 2 1	
	3. 2 3 4 1	
	4. 4 2 3 1	