SPECTRヘ
 PATH TO SUCCESS

CBSE Board
Class XII Mathematics
Sample Paper-1
Term 2 - 2021-22
Time: 2 hours
Total Marks: 40

General Instructions:

1. This question paper contains three sections $-A, B$ and C. Each part is compulsory.
2. Section - A has 6 short answer type (SA1) questions of 2 marks each
3. Section - B has 4 short answer type (SA2) questions of 3 marks each.
4. Section - C has 4 long answer type questions (LA) of 4 marks each.
5. There is an internal choice in some of the questions.
6. Q14 is a case-based problem having 2 sub parts of 2 marks each.

Section A Q1 - Q6 are of 2 marks each.

1. Integrate $\int \frac{\cos 2 x}{\sin ^{2} x \cos ^{2} x} d x$

OR
Integrate $\int_{2}^{8} \frac{\sqrt[3]{x+1}}{\sqrt[3]{x+1}+\sqrt[3]{11-x}} d x$
2. Check whether the differential equation $2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=0$ is homogeneous.
3. Write the direction cosines of the vectors $-2 \hat{i}+\hat{j}-5 \hat{k}$.
4. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z$ $=3$
5. Bag A contains 3 white and 4 red balls, and bag A contains 6 white and 3 red balls. An unbiased coin, twice as likely to come up heads as tails, is tossed once. If it shows head, a ball drawn from bag A, otherwise, from bag B. Given that a white ball was drawn, what is the probability that the coin came up tail?
6. When 150 identical coins are tossed the probability that the coins will show head is p . Suppose the probability of showing heads on 75 coins is equal to the probability of showing heads on 76 coins with the condition, $0<p<1$, then find the value of p.

Section B

Q7 - Q10 are of 3 marks each

7. Integrate: $\int \frac{d x}{3-10 x-25 x^{2}}$
8. Solve the given differential equation $(x+1) \frac{d y}{d x}=2 e^{-y}-1$ if $y(0)=0$.

OR

Find the particular solution of this differential equation $2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=$ 0 if it is homogeneous, given that $x=0$ when $y=1$.
9. Find λ if the vectors $\vec{a}=\hat{i}-\lambda \hat{j}+3 \hat{k}$ and $\vec{b}=4 \hat{i}-5 \hat{j}+2 \hat{k}$ are perpendicular to each other
10. The vector equations of two lines are:

$$
\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}-3 \hat{j}+\hat{k})
$$

Find the shortest distance between the above lines.

OR

Find the vector and Cartesian equation of the plane through $3 \hat{i}-\hat{j}+2 \hat{k}$ and parallel to the lines
$\vec{r}=-\hat{j}+3 \hat{k}+\lambda(2 \hat{i}-5 \hat{j}-\hat{k})$
$\vec{r}=\hat{i}-3 \hat{j}+\hat{k}+\mu(-5 \hat{i}+4 \hat{j})$

Section C

Q11 - Q14 are of 4 marks each

11. Integrate $\int(3 x-2) \sqrt{x^{2}+x+1} d x$
12. Using integration, find the area between the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.

OR

Find the area of the smaller region bounded by the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
13. Find the vector equation of the plane passing through three points with position vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathrm{k}}, 2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$. Also, find the coordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda 2 \hat{i}-2 \hat{j}+\hat{k}$.
14. Case Study

Four cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that
i. All the four cards are spades?
ii. Only 3 cards are spades?

Solution

Section A

1. $I=\int \frac{\cos 2 x}{\sin ^{2} x \cos ^{2} x} d x$

$$
I=\int \frac{\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x
$$

$$
I=\int\left(\frac{1}{\sin ^{2} x}-\frac{1}{\cos ^{2} x}\right) d x
$$

$$
I=\int\left(\operatorname{cosec}^{2} x-\sec ^{2} x\right) d x
$$

$$
\mathrm{I}=-\cot \mathrm{x}-\tan \mathrm{x}+\mathrm{c}
$$

OR

$$
\begin{aligned}
& \mathrm{I}=\int_{2}^{8} \frac{\sqrt[3]{x+1}}{\sqrt[3]{\mathrm{x+1}+\sqrt[3]{11-x}} d x \ldots \text { (i) }} \\
& \mathrm{I}=\int_{2}^{8} \frac{\sqrt[3]{10-x+1}}{\sqrt[3]{10-x+1}+\sqrt[3]{11-(10-x)}} \mathrm{dx} \\
& \mathrm{I}=\int_{2}^{8} \frac{\sqrt[3]{11-x}}{\sqrt[3]{11-x}+\sqrt[3]{1+x}} d x \ldots \text { (ii) }
\end{aligned}
$$

Adding (i) and (ii)
$2 I=\int_{2}^{8} \frac{\sqrt[3]{x+1}+\sqrt[3]{11-x}}{\sqrt[3]{x+1}+\sqrt[3]{11-x}} d x$
$\mathrm{I}=\frac{1}{2} \int_{2}^{8} \mathrm{dx}$
$\mathrm{I}=\frac{1}{2}[\mathrm{x}]_{2}^{8}$
$I=3$
2. Given DE is $2 y e^{x / y} d x+y-2 x e^{x / y} d y=0$

$$
\frac{d x}{d y}=\frac{2 x e^{\frac{x}{y}}-y}{2 y e^{\frac{x}{y}}}
$$

Let

$$
F x, y=\frac{2 x e^{\frac{x}{y}}-y}{2 y e^{\frac{x}{y}}}
$$

Then,
$F \lambda x, \lambda y=\frac{\lambda\left(2 x e^{\frac{x}{y}}-y\right)}{\lambda\left(2 y e^{\frac{x}{y}}\right)}=\lambda^{o}[F x, y]$
Thus, $F(x, y)$ is a homogeneous function of degree zero.
3. Let $\vec{a}=-2 \hat{i}+\hat{j}-5 \hat{k}$, then
$|\vec{a}|=\sqrt{(-2)^{2}+(1)^{2}+(-5)^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}}|=\sqrt{4+1+25}$
$\Rightarrow|\vec{a}|=\sqrt{30}$
Now, $\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{-2 \hat{i}+\hat{j}-5 \hat{k}}{\sqrt{30}}=-\frac{2}{\sqrt{30}} \hat{i}+\frac{1}{\sqrt{30}} \hat{j}-\frac{5}{\sqrt{30}} \hat{k}$
Thus, the direction cosines of the vector $-2 \hat{i}+\hat{j}-5 \hat{k}$ are $-\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}$ and $-\frac{5}{\sqrt{30}}$.
4. Let ϕ be the angle between the line and plane and θ be the angle between the line and normal to plane
$\phi=(90-\theta)$
Let \vec{b} be vector parallel to line

$$
\Rightarrow \overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}
$$

Let \hat{n} be normal to plane
$\Rightarrow \hat{\mathrm{n}}=10 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-11 \hat{\mathrm{k}}$

$$
\begin{aligned}
& \cos \theta=\left\lvert\, \frac{(2 \hat{i}+3 \hat{j}+6 \hat{k}) \cdot(10 \hat{i}+2 \hat{j}-11 \hat{k})}{\sqrt{2^{2}+3^{2}+6^{2}} \sqrt{10^{2}+2^{2}+11^{2}} \mid}\right. \\
& \Rightarrow \cos (90-\phi)=\left|\frac{-40}{7 \times 15}\right|=\left|\frac{-8}{21}\right| \\
& \Rightarrow \sin \phi=\frac{8}{21} \Rightarrow \phi=\sin ^{-1}\left(\frac{8}{21}\right)
\end{aligned}
$$

5.

Let W be the white ball was drawn and T be the tail come up.
$P\left(\frac{T}{W}\right)=\frac{P(T \cap W)}{P(W)}$
$=\frac{\frac{1}{2} \times \frac{6}{9}}{\frac{1}{2} \times \frac{6}{9}+\frac{1}{2} \times \frac{3}{7}}$
$=\frac{\frac{1}{3}}{\frac{1}{3}+\frac{3}{14}}$
$=\frac{14}{17}$
6. Let X be the number of coins showing heads.

Let X be a binomial variate with parameter $\mathrm{n}=150$ and p .
$\mathrm{P}(\mathrm{X}=75)=\mathrm{P}(\mathrm{X}=76)$
$\Rightarrow \mathrm{C}_{75}^{150} \mathrm{p}^{75}(1-\mathrm{p})^{75}=\mathrm{C}_{76}^{150} \mathrm{p}^{76}(1-\mathrm{p})^{74}$
$\Rightarrow \frac{150!}{75!75!}(1-\mathrm{p})=\frac{150!}{76!74!} \mathrm{p}$
$\Rightarrow \frac{1}{75}(1-\mathrm{p})=\frac{1}{76} \mathrm{p}$
$\Rightarrow \frac{\mathrm{p}}{1-\mathrm{p}}=\frac{76}{75}$

$$
\begin{aligned}
& \Rightarrow 75 \mathrm{p}=76-76 \mathrm{p} \\
& \Rightarrow 151 \mathrm{p}=76 \\
& \Rightarrow \mathrm{p}=\frac{76}{151}
\end{aligned}
$$

Section B

7. $I=\int \frac{d x}{3-10 x-25 x^{2}}$
$I=-\frac{1}{25} \int \frac{d x}{x^{2}+\frac{10}{25} x-\frac{3}{25}}$
$I=-\frac{1}{25} \int \frac{d x}{x^{2}+\frac{10}{25} x-\frac{3}{25}}$
$I=-\frac{1}{25} \int \frac{d x}{x^{2}+\frac{10}{25} x+\frac{1}{25}-\frac{3}{25}-\frac{1}{25}}$
$I=-\frac{1}{25} \int \frac{d x}{\left(x+\frac{1}{5}\right)^{2}-\left(\frac{2}{5}\right)^{2}}$
$I=-\frac{1}{25} \times \frac{1}{2 \times \frac{2}{5}} \log \left|\frac{5 x+1-2}{5 x+1+2}\right|+c$
$I=-\frac{1}{20} \log \left|\frac{5 x-1}{5 x+3}\right|+c$
8. Given DE is $(x+1) \frac{d y}{d x}=2 e^{-y}-1$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{2 e^{-y}-1}=\frac{d x}{(x+1)} \\
& \Rightarrow \int \frac{d y}{2 e^{-y}-1}=\int \frac{d x}{(x+1)} \\
& \Rightarrow-\int-\frac{e^{y} d y}{2-e^{y}}=\int \frac{d x}{(x+1)}
\end{aligned}
$$

$$
\begin{align*}
& -\log \left|2-\mathrm{e}^{\mathrm{y}}\right|=\log |\mathrm{x}+1|+\mathrm{c} \\
& \Rightarrow \log \left|(\mathrm{x}+1)\left(2-\mathrm{e}^{\mathrm{y}}\right)\right|=-\mathrm{c} \\
& \Rightarrow\left|(\mathrm{x}+1)\left(2-\mathrm{e}^{\mathrm{y}}\right)\right|=\mathrm{e}^{-\mathrm{C}} \\
& \Rightarrow(\mathrm{x}+1)\left(2-\mathrm{e}^{\mathrm{y}}\right)= \pm \mathrm{e}^{-\mathrm{C}}=\mathrm{A} \ldots \text { (say) } \\
& \Rightarrow(\mathrm{x}+1)\left(2-\mathrm{e}^{\mathrm{y}}\right)=\mathrm{A} \ldots \text { (ii) } \tag{ii}\\
& \mathrm{x}=0, \mathrm{y}=0 \\
& (0+1)\left(2-\mathrm{e}^{0}\right)=\mathrm{A} \\
& \Rightarrow 1(2-1)=\mathrm{A} \\
& \Rightarrow \mathrm{~A}=1
\end{align*}
$$

Substituting in (ii), we get
$(x+1)\left(2-e^{y}\right)=1$

OR

Let $\mathrm{x}=\mathrm{vy}$
Differentiating w.r.t. y, we get
$\frac{d x}{d y}=v+y \frac{d v}{d y}$
Substituting the value of x and $\frac{d x}{d y}$ in equation (1), we get
$v+y \frac{d v}{d y}=\frac{2 v y e^{v}-y}{2 y^{v}}=\frac{2 v e^{v}-1}{2 e^{v}}$
$y \frac{d v}{d y}=\frac{2 v e^{v}-1}{2 e^{v}}-v$
$y \frac{d v}{d y}=-\frac{1}{2 e^{v}}$
$2 e^{v} d v=\frac{-d y}{y}$
$\int 2 e^{v} \cdot d v=-\int \frac{d y}{y}$
$2 \mathrm{e}^{\mathrm{v}}=-\log |\mathrm{y}|+C$
Substituting the value of v, we get

$$
2 e^{\frac{x}{y}}+\log |y|=C \quad \ldots 2
$$

Substituting $x=0$ and $y=1$ in equation (2), we get
$2 \mathrm{e}^{\mathrm{o}}+\log |1|=C \Rightarrow C=2$

Substituting the value of C in equation (2), we get
$2 e^{\frac{x}{y}}+\log |y|=2$, Which is the particular solution of the given differential equation.
9.

Let \hat{n} be the unit vector along the sum of vectors $\vec{b}+\vec{c}$:
$\hat{n}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}$
The scalar product of \vec{a} and \hat{n} is 1 . Thus,
$\vec{a} \cdot \hat{n}=(\hat{i}+\hat{j}+\hat{k}) \cdot\left(\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}\right)$
$\Rightarrow 1=\frac{1(2+\lambda)+1 \cdot 6-1 \cdot 2}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}$
$\Rightarrow \sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}=2+\lambda+6-2$
$\Rightarrow \sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}=\lambda+6$
$\Rightarrow(2+\lambda)^{2}+40=(\lambda+6)^{2}$
$\Rightarrow \lambda^{2}+4 \lambda+4+40=\lambda^{2}+12 \lambda+36$
$\Rightarrow 4 \lambda+44=12 \lambda+36$
$\Rightarrow 8 \lambda=8$
$\Rightarrow \lambda=1$
10. The given equations of the lines are $\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}-3 \hat{j}+\hat{k})$
On comparing with standard equation of line
We have $a_{1}=\hat{i}+2 \hat{j}+3 \hat{k}, b_{1}=\hat{i}-3 \hat{j}+2 \hat{k}$
$a_{2}=4 \hat{i}+5 \hat{j}+6 \hat{k}, b_{2}=2 \hat{i}-3 \hat{j}+\hat{k}$
Therefore, $a_{2}-a_{1}=3 \hat{i}+3 \hat{j}+3 \hat{k}$
$\therefore \vec{a}_{2}-\vec{a}_{1}=3 \hat{i}+3 \hat{j}+3 \hat{k}$

$$
\begin{aligned}
\vec{b}_{1} & \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right| \\
& =-9 \hat{i}+3 \hat{j}+9 \hat{k} \\
\therefore & \left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(3 \hat{i}+3 \hat{j}+3 \hat{k}) \cdot(-9 \hat{i}+3 \hat{j}+9 \hat{k}) \\
& =(3)(-9)+3(3)+3(9) \\
& =-27+9+27=9
\end{aligned}
$$

And, $\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-9)^{2}+3^{2}+9^{2}}$

$$
=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19}
$$

\therefore Shortest Distance $=\left|\frac{\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)}{\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|}\right|$

OR

Required plane passes through the point with position vector $\vec{r}=3 \hat{i}-\hat{j}+2 \hat{k}$ and parallel to vectors $\vec{b}=2 \hat{i}-5 \hat{j}-\hat{k}$ and $\vec{d}=-5 \hat{i}+4 \hat{j}$
The equation of the plane is,
$\left(\vec{r}-\vec{r}_{1}\right) \cdot(\vec{b} \times \vec{d})=0$
$\vec{b} \times \vec{d}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -5 & -1 \\ -5 & 4 & 0\end{array}\right|=4 \hat{i}+5 \hat{j}-17 \hat{k}$
So the equation is,

$$
\begin{aligned}
& (\vec{r}-(3 \hat{i}-\hat{j}+2 \hat{k})) \cdot(4 \hat{i}+5 \hat{j}-17 \hat{k})=0 \\
& \Rightarrow \vec{r} \cdot(4 \hat{i}+5 \hat{j}-17 \hat{k})-(3 \cdot 4+(-1) \cdot 5+2(-17))=0 \\
& \Rightarrow \vec{r} \cdot(4 \hat{i}+5 \hat{j}-17 \hat{k})+27=0[\text { Vector equation }] \\
& \Rightarrow 4 x+5 y-17 y+27=0 \quad \text { [Cartesian equation] }
\end{aligned}
$$

Section C

11. $I=\int(3 x-2) \sqrt{x^{2}+x+1} d x$

We express
$3 x-2=A \frac{d}{d x}\left(x^{2}+x+1\right)+B$
$\Rightarrow 3 \mathrm{x}-2=\mathrm{A}(2 \mathrm{x}+1)+\mathrm{B}$
$\Rightarrow 3 \mathrm{x}-2=2 \mathrm{Ax}+\mathrm{A}+\mathrm{B}$
$\Rightarrow 2 A=3$ i.e. $A=3 / 2$
$\Rightarrow A+B=-2$
$\Rightarrow B=-7 / 2$
$I=\int\left(\frac{3}{2}(2 x+1)-\frac{7}{2}\right) \sqrt{x^{2}+x+1} d x$
$I=\int\left(\frac{3}{2}(2 x+1) \sqrt{x^{2}+x+1}\right) d x-\int \frac{7}{2} \sqrt{x^{2}+x+1} d x$
$\mathrm{I}=\mathrm{I}_{1}-\mathrm{I}_{2}$
$I_{1}=\int\left(\frac{3}{2}(2 x+1) \sqrt{x^{2}+x+1}\right) d x$
Put $t=x^{2}+x+1 \Rightarrow(2 x+1) d x=d t$
$I_{1}=\frac{3}{2} \int \sqrt{\mathrm{t} d t}=\frac{3}{2} \times \frac{\mathrm{t}^{\frac{3}{2}}}{\frac{3}{2}}=\mathrm{t}^{\frac{3}{2}}+\mathrm{c}=\sqrt[3]{\mathrm{x}^{2}+\mathrm{x}+1}+\mathrm{c}$
$I_{2}=\int \frac{7}{2} \sqrt{x^{2}+x+1} d x$
$I_{2}=\frac{7}{2} \int \sqrt{x^{2}+x+\frac{1}{4}+1-\frac{1}{4}} d x$
$I_{2}=\frac{7}{2} \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x=\frac{7}{4}\left(x+\frac{1}{2}\right) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|x+\sqrt{x^{2}+x+1}\right|+c$
$\mathrm{I}=\sqrt[3]{\mathrm{x}^{2}+\mathrm{x}+1}+\frac{7}{4}\left(\mathrm{x}+\frac{1}{2}\right) \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}+\frac{3}{8} \log \left|\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}\right|+\mathrm{c}$
12. $x^{2}+y^{2}=16 \ldots$ (i) and $y^{2}=6 x \ldots$ (ii)

Points of intersection of curve (i) and (ii) is
$\therefore \quad \mathrm{A}(2,2 \sqrt{3})$ and $\mathrm{B}(2,-2 \sqrt{3})$
Also $C(4,0)$.
Area $0 B C A O=2$ (Area ODA + Area DCA)
$=2\left[\int_{0}^{2} y_{2} d x+\int_{2}^{4} y_{1} d x\right]$
$=2\left[\int_{0}^{2} \sqrt{6 \mathrm{x}} \mathrm{dx}+\int_{2}^{4} \sqrt{16-\mathrm{x}^{2}} \mathrm{dx}\right]$
$=2\left[\sqrt{6} \cdot\left\{\frac{2}{3} x^{3 / 2}\right\}_{0}^{2}+\left\{\frac{x \sqrt{16-x^{2}}}{2}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right\}_{2}^{4}\right]$

$$
\begin{aligned}
& =2\left[\frac{2 \sqrt{6}}{3} \cdot 2 \sqrt{2}+\left\{0+8 \sin ^{-1} 1\right\}-\left\{\frac{2 \cdot 2 \sqrt{3}}{2}+8 \sin ^{-1} \frac{1}{2}\right\}\right] \\
& =\frac{16 \sqrt{3}}{3}+16 \cdot \frac{\pi}{2}-\left(4 \sqrt{3}+16 \cdot \frac{\pi}{6}\right) \\
& =\left(\frac{4 \sqrt{3}}{3}+\frac{16}{3} \pi\right) \text { sq. units. }
\end{aligned}
$$

OR

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x}{a}+\frac{y}{b}=1$

Equation (i) gives $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$
Equation (ii) gives $y=b\left(1-\frac{x}{a}\right)$
(Area of the smaller region)
$=\int_{0}^{a}\left(y_{1}-y_{2}\right) d x$

$$
\begin{aligned}
& =\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x \\
& =\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x-b \int_{0}^{a}\left(1-\frac{x}{a}\right) d x \\
& =\frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}-b\left[x-\frac{x^{2}}{2 a}\right]_{0}^{a} \\
& =\frac{b}{a}\left[\frac{a^{2}}{2} \sin ^{-1} 1\right]-b\left[a-\frac{a^{2}}{2 a}\right] \\
& =\frac{a b}{2} \cdot \frac{\pi}{2}-\frac{a b}{2}=\frac{1}{4} a b(\pi-2) \text { sq. units. }
\end{aligned}
$$

13. Let the position vectors of the three points be, $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}+\hat{k}$.

So, the equation of the plane passing through the points \vec{a}, \vec{b} and \vec{c} is

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}} \cdot[\overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}]=0 \\
& \Rightarrow[\overrightarrow{\mathrm{r}}-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}] \cdot[\hat{\mathrm{i}}-3 \hat{\mathrm{j}} \times \hat{\mathrm{j}}+3 \hat{\mathrm{k}}]=0 \\
& \Rightarrow[\overrightarrow{\mathrm{r}}-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}] \cdot \hat{\mathrm{k}}-3 \hat{\mathrm{j}}-9 \hat{\mathrm{i}}=0 \\
& \Rightarrow \overrightarrow{\mathrm{r}} \cdot-9 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}+14=0 \\
& \Rightarrow \overrightarrow{\mathrm{r}} \cdot 9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}=14
\end{aligned}
$$

So, the vector equation of the required plane is $\overrightarrow{\mathrm{r}} .9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}=14$.
The equation of the given line is $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda 2 \hat{i}-2 \hat{j}+\hat{k}$.
Position vector of any point on the give line is
$\overrightarrow{\mathrm{r}}=3+2 \lambda \hat{\mathrm{i}}+-1-2 \lambda \hat{\mathrm{j}}+-1+\lambda \hat{\mathrm{k}}$ 2
The point (2) lies on plane (1) if, $[3+2 \lambda \hat{\mathrm{i}}+-1-2 \lambda \hat{\mathrm{j}}+-1+\lambda \hat{\mathrm{k}}] \cdot 9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}=14$
$\Rightarrow 93+2 \lambda+3-1-2 \lambda-1+\lambda=14$
$\Rightarrow 11 \lambda+25=14$
$\Rightarrow \lambda=-1$
Putting $\lambda=-1$ in (2), we have

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} & =3+2 \lambda \hat{\mathrm{i}}+-1-2 \lambda \hat{\mathrm{j}}+-1+\lambda \hat{\mathrm{k}} \\
& =3+2-1 \hat{\mathrm{i}}+-1-2-1 \hat{\mathrm{j}}+-1+-1 \hat{\mathrm{k}} \\
& =\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}
\end{aligned}
$$

Thus, the position vector of the point of intersection of the given line and plane (1) is $\hat{i}+\hat{j}-2 \hat{k}$ and its co-ordinates are $1,1,-2$.
14.

This is a case of bernoulli trials.
$\mathrm{p}=\mathrm{P}($ Success $)=\mathrm{P}($ getting a spade in a single draw $)=\frac{13}{52}=\frac{1}{4}$
$\mathrm{q}=\mathrm{P}($ Failure $)=1-\mathrm{p}=1-\frac{1}{4}=\frac{3}{4}$
i. All the four cards are spades $=P(X=4)={ }^{4} \mathrm{C}_{4} \mathrm{p}^{4} \mathrm{q}^{0}=\left(\frac{1}{4}\right)^{4}=\frac{1}{256}$
ii. Only 3 cards are spades $=P(X=3)={ }^{4} C_{3} p^{3} q^{1}=\frac{12}{256}=\frac{3}{64}$

